In our effort to develop agents for the treatment of influenza, a phenotypic screening approach utilizing a cell protection assay identified a series of azaindole based inhibitors of the cap-snatching function of the PB2 subunit of the influenza A viral polymerase complex. Using a bDNA viral replication assay (Wagaman, P. C., Leong, M. A., and Simmen, K. A. Development of a novel influenza A antiviral assay. J. Virol. Methods 2002, 105, 105-114) in cells as a direct measure of antiviral activity, we discovered a set of cyclohexyl carboxylic acid analogues, highlighted by VX-787 (2). Compound 2 shows strong potency versus multiple influenza A strains, including pandemic 2009 H1N1 and avian H5N1 flu strains, and shows an efficacy profile in a mouse influenza model even when treatment was administered 48 h after infection. Compound 2 represents a first-in-class, orally bioavailable, novel compound that offers potential for the treatment of both pandemic and seasonal influenza and has a distinct advantage over the current standard of care treatments including potency, efficacy, and extended treatment window.
Previous studies in this laboratory have demonstrated that transcriptional deregulation of c-Ha-ras expression is associated with the induction and maintenance of proliferative vascular smooth muscle cell (SMC) phenotypes by benzo[a]pyrene (BaP). We examined previously undescribed cis-acting elements within the proximal 5' regulatory region of c-Ha-ras (-550 to +220) for their ability to influence BaP-induced transcription in murine SMCs. BaP-inducible DNA binding activity was demonstrated at a site located -30 relative to the major start site cluster at +1 that exhibits extensive homology to a consensus aryl hydrocarbon response element (AHRE), as well as a site located at -543 that contains a consensus electrophile response element (EpRE). In vitro cross-linking studies revealed the specific interaction of 104- and 96-kDa proteins with the putative AHRE and of an 80-kDa protein with the EpRE. The use of monoclonal antibodies to the aryl hydrocarbon receptor transcription factor in competition electrophoretic mobility shift assays indicated this protein is specifically induced by BaP to interact at the AHRE within the c-Ha-ras 5' regulatory region. Transient transfection with an Ha-ras promoter construct containing the putative AHRE but lacking the EpRE linked to the chloramphenicol acetyl transferase reporter gene, followed by challenge with BaP (0.3, 3.0, and 30 microM), revealed transcriptional activation that was not statistically significant. However, insertion of an oligonucleotide composed of the EpRE immediately upstream of basal sequences at -330 was associated with strong activation of transcription by BaP. These data indicate that c-Ha-ras gene expression is modulated by BaP via a complex mechanism that likely involves interactions among multiple regulatory elements. We conclude that c-Ha-ras expression is regulated by BaP at the transcriptional level, a response that may constitute an epigenetic basis of atherogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.