Polymerization of Resin Based Composites (RBCs) initiated by a light curing unit activating photoinitiators. Different RBCs require different light energy levels for proper curing. Manufacturers are now producing RBCs with more than one initiator and not all of these will be properly polymerised with blue LED lights. An added problem is that manufacturers do not always indicate the type of photoinitiators in their materials. This review discusses the importance of matching the spectral output of LCUs to the absorption spectra of RBCs and the consequences of spectral mismatch. Resin based composites (RBCs) were first introduced in the 1960s and with development of effective and reliable dentine bonding systems2, have been used routinely as a filling material for both anterior and posterior teeth. The early RBCs were either chemically cured two component materials or photo-initiated materials that used UV initiators in the beginning and then transitioned to visible light initiators such as camphorquinine which was introduced in 1978.3 The first report of a light curing material was of an ultraviolet (UV) cured fissure sealant. However, due to the limited penetration depth of the UV light and the potential health hazards, this system was quickly abandoned. The advancement of science yielded light curing materials which contributed to a significant clinical progress over the UV and chemically cured RBCs. Additional advancements to direct RBC restoration materials included luting agents for ceramic restorations, pit and fissure sealants and resin modified glass ionomers. Polymerization in an RBC is initiated by a light curing unit (LCU); this technology is based on the use of photoreactive systems that absorb light irradiation from the LCUs at appropriate wavelength. Then the photoinitiators contained in the RBCs, absorb the incoming photons from the LCU and the monomers in the molecular structure become excited and in that active state, there is a change from monomers into a polymer network. The success of this technology hinges on matching the spectral emission of the LCU with the requirements of the photoinitiator system to convert the monomers into a polymer network. The amount of activated photo initiator depends on the concentration of photoinitiator in the material, the number of photons to which the material is exposed and the energy of the photons (wavelength), the latter depending on the curing light.The most common photoinitiator in dental materials today is camphorquinone, which has a peak activity around 470 nanometres. The factors affecting polymerization include filler type, size and loading, the thickness and shade of the restorative material, the effectiveness of light transmission (eg. light guide tips being free from debris and scratches), exposure time, distance of the light source from the restorative material and light intensity. It is important to note that the photoinitiator activation occurs at specific wavelengths, in other words, the optimum efficiency is obtained when the peak absorptivity ...
All three polywave LED units delivered a nonuniform irradiance distribution across their emitting tip ends at the two important emission wavelengths of 405 nm and 460 nm, whereas the broadband light sources (QTH and PAC) showed no evidence of spectral inhomogeneity at these wavelengths.
Using different light guides on the same LCU significantly affected the power output, irradiance values, and beam homogeneity. For all LCUs, irradiance values calculated using conventional methods (I(CM)) did not represent the irradiance distribution across the tip end of the LCU. CLINICAL SIGNIFICANCE Irradiance values calculated using conventional methods assume power uniformity within the beam and do not validly characterize the distribution of the irradiance delivered from dental light curing units.
This study used a hardness mapping technique to compare the ability of seven curing lights to polymerize five composites. Six curing lights (Sapphire [plasma-arc: PAC], Bluephase16i [light emitting diode: LED], LEDemetron II [LED], SmartLite IQ [LED], Allegro [LED] and UltraLume-5 [Polywave LED]) were compared to an Optilux 501 (halogen: QTH) light. Five resin composites (Vit-1-escence, Tetric Evoceram, Filtek Z250, 4 Seasons and Solitaire 2) were polymerized at 4 mm and 8 mm from the end of the light guide. Four composites were light cured for the following times using these lights: Sapphire (5 seconds), Bluephase16i (5 seconds), LEDemetron II (5 seconds), SmartLite IQ (10 seconds), UltraLume-5 (10 seconds), Allegro (10 seconds) and Optilux 501 (20 seconds). Solitaire 2 required double these irradiation times. On each specimen, the Knoop microhardness (KHN) was measured at 49 locations across a 3 x 3 mm grid to determine the ability of each light to cure each brand of composite. The PAC light delivered the broadest spectrum of wavelengths, the greatest irradiance and hardness values that were 4.7 to 18.1 KHN(50gf) harder than the other lights. The ability of the lights to cure these five composites was ranked from highest to lowest: Sapphire, Optilux 501, Allegro, UltraLume-5, SmartLite IQ, LEDemetron II and Bluephase16i (ANOVA with REGWQ multiple comparison adjustment, p < 0.01).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.