Classical strategies for structure analysis of proteins interacting with a lipid phase typically correlate ensemble secondary structure content measurements with changes in the spectroscopic responses of localized aromatic residues or reporter molecules to map regional solvent environments. Deep-UV resonance Raman (DUVRR) spectroscopy probes the vibrational modes of the peptide backbone itself, is very sensitive to the ensemble secondary structures of a protein, and has been shown to be sensitive to the extent of solvent interaction with the peptide backbone [ Wang , Y. , Purrello , R. , Georgiou , S. , and Spiro , T. G. ( 1991 ) J. Am. Chem. Soc. 113 , 6368 - 6377 ]. Here we show that a large detergent solubilized membrane protein, the Rhodobacter capsulatus cytochrome bc(1) complex, has a distinct DUVRR spectrum versus that of an aqueous soluble protein with similar overall secondary structure content. Cross-section calculations of the amide vibrational modes indicate that the peptide backbone carbonyl stretching modes differ dramatically between these two proteins. Deuterium exchange experiments probing solvent accessibility confirm that the contribution of the backbone vibrational mode differences are derived from the lipid solubilized or transmembrane α-helical portion of the protein complex. These findings indicate that DUVRR is sensitive to both the hydration status of a protein's peptide backbone, regardless of primary sequence, and its secondary structure content. Therefore, DUVRR may be capable of simultaneously measuring protein dynamics and relative water/lipid solvation of the protein.
The metal sites of electron transfer proteins are tuned for function. The type 1 copper site is one of the most utilized metal sites in electron transfer reactions. This site can be tuned by the protein environment from +80 mV to +680 mV in typical type 1 sites. Accompanying this huge variation in midpoint potentials are large changes in electronic structure, resulting in proteins that are blue, green, or even red. Here, we report a family of blue copper proteins, the auracyanins, from the filamentous anoxygenic phototroph Chloroflexus aurantiacus that display the entire known spectral and redox variations known in the type 1 copper site. C. aurantiacus encodes four auracyanins, labeled A-D. The midpoint potentials vary from +83 mV (auracyanin D) to +423 mV (auracyanin C). The electronic structures vary from classical blue copper UV-vis absorption spectra (auracyanin B) to highly perturbed spectra (auracyanins C and D). The spectrum of auracyanin C is temperature-dependent. The expansion and divergent nature of the auracyanins is a previously unseen phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.