Unit bars are relatively large bedforms that develop in rivers over a wide range of climatic regimes. Unit bars formed within the highly‐variable discharge Burdekin River in Queensland, Australia, were examined over three field campaigns between 2015 and 2017. These bars had complex internal structures, dominated by co‐sets of cross‐stratified and planar‐stratified sets. The cross‐stratified sets tended to down‐climb. The development of complex internal structures was primarily a result of three processes: (i) superimposed bedforms reworking the unit bar avalanche face; (ii) variable discharge triggering reactivation surfaces; and (iii) changes in bar growth direction induced by stage change. Internal structures varied along the length and across the width of unit bars. For the former, down‐climbing cross‐stratified sets tended to pass into single planar cross‐stratified deposits at the downstream end of emergent bars; such variation related to changes in fluvial conditions whilst bars were active. A hierarchy of six categories of fluvial unsteadiness is proposed, with these discussed in relation to their effects on unit bar (and dune) internal structure. Across‐deposit variation was caused by changes in superimposed bedform and bar character along bar crests; such changes related to the three‐dimensionality of the channel and bar geometry when bars were active. Variation in internal structure is likely to be more pronounced in unit bar deposits than in smaller bedform (for example, dune) deposits formed in the same river. This is because smaller bedforms are more easily washed out or modified by changing discharge conditions and their smaller dimensions restrict the variation in flow conditions that occur over their width. In regimes where unit bar deposits are well‐preserved, their architectural variability is a potential aid to their identification. This complex architecture also allows greater resolution in interpreting the conditions before and during bar initiation and development.
Back-flow ripples are bedforms created within the lee-side eddy of a larger bedform with migration directions opposed or oblique to that of the host bedform. In the flume experiments described in this article, back-flow ripples formed in the trough downstream of a unit bar and changed with mean flow velocity; varying from small incipient back-flow ripples at low velocities, to well-formed back-flow ripples with greater velocity, to rapidly migrating transient back-flow ripples formed at the greatest velocities tested. In these experiments back-flow ripples formed at much lower mean back-flow velocities than predicted from previously published descriptions. This lower threshold mean back-flow velocity is attributed to the pattern of velocity variation within the lee-side eddy of the host bedform. The back-flow velocity variations are attributed to vortex shedding from the separation zone, wake flapping and increases in the size of, and turbulent intensity within, the flow separation eddy controlled by the passage of superimposed bedforms approaching the crest of the bar. Short duration high velocity packets, whatever their cause, may form back-flow ripples if they exceed the minimum bed shear stress for ripple generation for long enough or, if much faster, may wash them out. Variation in back-flow ripple cross-lamination has been observed in the rock record and, by comparison with flume observations, the preserved back-flow ripple morphology may be useful for interpreting formative flow and sediment transport dynamics.
Bottomsets are formed in the troughs of migrating bedforms. The flow and sediment dynamics downstream of bedforms differ, and consequently, the thickness, grain size, and internal structure of bottomsets vary greatly. A classification of the controls on bottomset formation is proposed related to two-and three-dimensional processes, flow and sediment unsteadiness, and pre-existing deposits. Structures and deposits created by flow and sediment unsteadiness as well as pre-existing deposits are also considered in relation to changes they can induce in subsequent trough processes. The classification is illustrated by observations from laboratory flumes, the modern Burdekin River (Australia), and the rock record (The Roaches Grit, England, and Hawkesbury Sandstone, Australia).In bottomset examples described in this paper, internal variability, both vertically and laterally, was much greater than that within the dominant foreset component. Complex compound structures were created by the interaction and predominance of different bottomset controls. This, combined with their high preservation potential, makes them a highly useful paleoenvironmental indicator. Bottomset variation (e.g., changes in the abundance of mud laterally) will influence the permeability heterogeneity of fluvial reservoir rocks. Bottomsets formed under relatively steady conditions are likely to be laterally extensive and have similar characteristics over their entire length. They may act as significant barriers to vertical flow. Conversely, bottomsets generated in unsteady regimes tend to be highly variable, potentially creating conduits between cross-bed sets aiding inter-set permeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.