A plot of the pH dependence of kcat/KM for human stromelysin-1 (HS) exhibits a narrow range of maximal activity extending from pH 5.75 to 6.25 and a broad shoulder in the pH range of 7.5-8.5. In contrast, the pH profiles that have been reported for other members of the matrix metalloproteinase (MMP) family are bell-shaped and exhibit neutral pH optima. We hypothesized that the anomalous pH dependence of HS reflects the ionization of His-224, a residue located in a flexible loop that contributes to the S1' binding pocket of the enzyme. HS is the only known MMP that has a histidine in this position. To test this hypothesis, the H224Q mutant of the short form (lacking the C-terminal hemopexin-like domain) of HS (sHS) has been prepared and studied. The pH profile of H224Q sHS is bell-shaped and similar to those reported for other MMPs. Although H224Q and wild-type sHS possess similar activities at pH <6, the kcat/KM of H224Q sHS is more than 5-fold greater than that of the wild-type enzyme at pH >7. These data strongly suggest that the deprotonation of His-224 attenuates the activity of HS, thereby accounting for its low pH optimum and the characteristic shoulder in its pH profile. This attenuation of activity appears to be predominantly a KM effect, reflecting a decrease in the affinity of the enzyme for the peptide substrate.
Previous studies of the mechanism of the steroid isomerase of Comamonas (Pseudomonas) testosteroni have identified aspartate 38 as the proton porter which transfers the substrate's 4 beta proton to the 6 beta position of the product. Consequently, aspartate 38 functions as a base in the deprotonation of the substrate to form a dienol or dienolate intermediate, which then undergoes reprotonation from protonated aspartate 38 at C-6 beta to give the product. We have tried to characterize the transition states for the proton transfers by altering the pKa' of aspartate 38 and then determining the effect of the alteration on the kinetics of the enzyme. Alteration of the pKa' was accomplished by replacement of the carboxyl carbon of aspartate 38 by sulfur, a change which converts the carboxylate group to the much less basic sulfinate group. Employing Brønsted catalysis theory as applied to the individual steps of the isomerase mechanism, we find that in the enolization step of the reaction proton transfer to aspartate 38 is well advanced in the transition state. In the subsequent ketonization step, proton transfer from aspartate 38 has barely started when that transition state is reached. A series of mutant KSIs with alternative bases at position 38 have been constructed using a combination of site-directed mutagenesis and chemical modification: Asp-38 to Glu (D38E), His (D38H), and S-(carboxymethyl)cysteine (D38CMC). While the D38H and D38E mutants both retain significant isomerase activity, D38CMC is essentially inert. From the results of kinetic experiments it is possible to get a qualitative idea of the sensitivity of the enzyme's catalytic ability to the location of the base responsible for proton transfer.
Delta 5-3-Ketosteroid isomerase (KSI) of Comamonas testosteroni catalyzes the isomerization of a wide variety of delta 5(6) and delta 5(10) steroids through the formation of an enzyme bound dienol(ate) intermediate. Asp-38 has been strongly implicated in catalysis, apparently serving as a proton shuttle. In this paper the results of a detailed kinetic characterization of the KSI mutants D38E and D38H are presented. Both mutants retain significant activity, with kcat and kcat/Km values 10(3)-10(4) times greater than the D38N mutant. The results allow for a qualitative assessment of the sensitivity of the enzymes catalytic capability to the positioning and chemical nature of the catalytic base. The near identity of the ratios of kcat5-AND/kcat5,10-EST is most easily explained by a mechanism in which the second chemical step, reketonization of the intermediate dienol(ate), is not significantly rate determining. The pH dependence of the rate constants for the D38E and D38H mutants is found to be consistent with earlier proposals that an as yet unidentified titrating functional group is present in the active site and indicates that the electrostatic environment of residue 38 is hydrophobic and positively charged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.