Estimation of chest wall motion by surface measurements only allows one-dimensional measurements of the chest wall. We have assessed on optical reflectance system (OR), which tracks reflective markers in three dimensions (3-D) for respiratory use. We used 86 (6-mm-diameter) hemispherical reflective markers arranged circumferentially on the chest wall in seven rows between the sternal notch and the anterior superior iliac crest in two normal standing subjects. We calculated the volume of the entire chest wall and compared inspired and expired volumes with volumes obtained by spirometry. Marker positions were recorded by four TV cameras; two were 4 m in front of and two were 4 m behind the subject. The TV signals were sampled at 100 Hz and combined with grid calibration parameters on a personal computer to obtain the 3-D coordinates of the markers. Chest wall surfaces were reconstructed by triangulation through the point data, and chest wall volume was calculated. During tidal breathing and vital capacity maneuvers and during CO2-stimulated hyperpnea, there was a very close correlation of the lung volumes (VL) estimated by spirometry [VL(SP)] and OR [VL(OR)]. Regression equations of VL(OR) (y) vs. VL(SP) (x, BTPS in liters) for the two subjects were given by y = 1.01x-0.01 (r = 0.996) and y = 0.96x + 0.03 (r = 0.997), and by y = 1.04x + 0.25 (r = 0.97) and y = 0.98x + 0.14 (r = 0.95) for the two maneuvers, respectively. We conclude spirometric volumes can be estimated very accurately and directly from chest wall surface markers, and we speculate that OR may be usefully applied to calculations of chest wall shape, regional volumes, and motion analysis.
We measured pressures and power of diaphragm, rib cage, and abdominal muscles during quiet breathing (QB) and exercise at 0, 30, 50, and 70% maximum workload (Wmax) in five men. By three-dimensional tracking of 86 chest wall markers, we calculated the volumes of lung- and diaphragm-apposed rib cage compartments (Vrc,p and Vrc,a, respectively) and the abdomen (Vab). End-inspiratory lung volume increased with percentage of Wmax as a result of an increase in Vrc,p and Vrc,a. End-expiratory lung volume decreased as a result of a decrease in Vab. DeltaVrc,a/DeltaVab was constant and independent of Wmax. Thus we used DeltaVab/time as an index of diaphragm velocity of shortening. From QB to 70% Wmax, diaphragmatic pressure (Pdi) increased approximately 2-fold, diaphragm velocity of shortening 6.5-fold, and diaphragm workload 13-fold. Abdominal muscle pressure was approximately 0 during QB but was equal to and 180 degrees out of phase with rib cage muscle pressure at all percent Wmax. Rib cage muscle pressure and abdominal muscle pressure were greater than Pdi, but the ratios of these pressures were constant. There was a gradual inspiratory relaxation of abdominal muscles, causing abdominal pressure to fall, which minimized Pdi and decreased the expiratory action of the abdominal muscles on Vrc,a gradually, minimizing rib cage distortions. We conclude that from QB to 0% Wmax there is a switch in respiratory muscle control, with immediate recruitment of rib cage and abdominal muscles. Thereafter, a simple mechanism that increases drive equally to all three muscle groups, with drive to abdominal and rib cage muscles 180 degrees out of phase, allows the diaphragm to contract quasi-isotonically and act as a flow generator, while rib cage and abdominal muscles develop the pressures to displace the rib cage and abdomen, respectively. This acts to equalize the pressures acting on both rib cage compartments, minimizing rib cage distortion.
We hypothesized that short-term variation in airway caliber could be quantified by frequency distributions of respiratory impedance (Zrs) measured at high frequency. We measured Zrs at 6 Hz by forced oscillations during quiet breathing for 15 min in 10 seated asthmatic patients and 6 normal subjects in upright and supine positions before and after methacholine (MCh). We plotted frequency distributions of Zrs and calculated means, skewness, kurtosis, and significance of differences between normal and log-normal frequency distributions. The data were close to, but usually significantly different from, a log-normal frequency distribution. Mean lnZrs in upright and supine positions was significantly less in normal subjects than in asthmatic patients, but not after MCh and MCh in the supine position. The lnZrs SD (a measure of variation), in the upright position and after MCh was significantly less in normal subjects than in asthmatic patients, but not in normal subjects in the supine position and after MCh in the supine position. We conclude that 1) the configuration of the normal tracheobronchial tree is continuously changing and that this change is exaggerated in asthma, 2) in normal lungs, control of airway caliber is homeokinetic, maintaining variation within acceptable limits, 3) normal airway smooth muscle (ASM) when activated and unloaded closely mimics asthmatic ASM, 4) in asthma, generalized airway narrowing results primarily from ASM activation, whereas ASM unloading by increasing shortening velocity allows faster caliber fluctuations, 5) activation moves ASM farther from thermodynamic equilibrium, and 6) asthma may be a low-entropy disease exhibiting not only generalized airway narrowing but also an increased appearance of statistically unlikely airway configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.