Glutamate transporters are involved in the maintenance of synaptic glutamate concentrations. Because of its potential neurotoxicity, clearance of glutamate from the synaptic cleft may be critical for neuronal survival. Inhibition of glutamate uptake from the synapse has been implicated in several neurodegenerative disorders. In particular, glutamate uptake is inhibited in Alzheimer's disease (AD); however, the mechanism of decreased transporter activity is unknown. Oxidative damage in brain is implicated in models of neurodegeneration, as well as in AD. Glutamate transporters are inhibited by oxidative damage from reactive oxygen species and lipid peroxidation products such as 4‐hydroxy‐2‐nonenal (HNE). Therefore, we have investigated a possible connection between the oxidative damage and the decreased glutamate uptake known to occur in AD brain. Western blots of immunoprecipitated HNE‐immunoreactive proteins from the inferior parietal lobule of AD and control brains suggest that HNE is conjugated to GLT‐1 to a greater extent in the AD brain. A similar analysis of beta amyloid (Aβ)‐treated synaptosomes shows for the first time that Aβ1–42 also increases HNE conjugation to the glutamate transporter. Together, our data provide a possible link between the oxidative damage and neurodegeneration in AD, and supports the role of excitotoxicity in the pathogenesis of this disorder. Furthermore, our data suggests that Aβ may be a possible causative agent in this cascade.
Oxidative stress induced by amyloid beta-peptide (A beta) has been implicated in the neurodegeneration observed in Alzheimer's disease (AD) brain. However, the mechanism by which the predominant form of A beta found in AD brains, A beta(1--42), causes oxidative stress and neurotoxicity remains unknown. Numerous laboratories have used the smaller 11-amino acid fragment of the full-length peptide, A beta(25--35), as a convenient alternative in AD investigations since the smaller peptide mimics several of the toxicological and oxidative stress properties of the native full-length peptide. Our observation that the truncated peptide is more rapidly toxic and causes more oxidative damage than the parent A beta(1--42) led us to investigate the cause for this enhanced toxicity of A beta(25--35) in order to gain insight into the mechanism of action of these peptides. These studies reveal that two different mechanisms may be operative in the two peptides; however, the single methionine residue in the peptides appears to play a crucial role in both mechanisms. That methionine is C-terminal in A beta(25--35) seems to be the cause for its exaggerated effects. When the next amino acid in the sequence of A beta(1--42) (valine) is appended to A beta(25--35), the resultant peptide, A beta(25--36), in which methionine is no longer C-terminal, is neither toxic to cultured neurons nor does it cause oxidative damage. Additionally, oxidizing the sulfur of methionine to a sulfoxide abrogates the damaging effects of both A beta(25--35) and A beta(1--42). The putative mechanistic role of methionine in the observed properties of A beta peptides is discussed in the context of the obtained results as is the role of A beta(1--42)-induced oxidative stress in the neurodegeneration found in AD brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.