The use of mass spectrometry in macromolecular analysis is an incredibly important technique and has allowed efficient identification of secondary and tertiary protein structures. Over 20 years ago, Chemistry Nobelist John Fenn and co-workers revolutionized mass spectrometry by developing ways to non-destructively extract large molecules directly from solution into the gas phase. This advance, in turn, enabled rapid sequencing of biopolymers through tandem mass spectrometry at the heart of the burgeoning field of proteomics. In this Account, we discuss how cryogenic cooling, mass selection, and reactive processing together provide a powerful way to characterize ion structures as well as rationally synthesize labile reaction intermediates. This is accomplished by first cooling the ions close to 10 K and condensing onto them weakly bound, chemically inert small molecules or rare gas atoms. This assembly can then be used as a medium in which to quench reactive encounters by rapid evaporation of the adducts, as well as provide a universal means for acquiring highly resolved vibrational action spectra of the embedded species by photoinduced mass loss. Moreover, the spectroscopic measurements can be obtained with readily available, broadly tunable pulsed infrared lasers because absorption of a single photon is sufficient to induce evaporation. We discuss the implementation of these methods with a new type of hybrid photofragmentation mass spectrometer involving two stages of mass selection with two laser excitation regions interfaced to the cryogenic ion source. We illustrate several capabilities of the cryogenic ion spectrometer by presenting recent applications to peptides, a biomimetic catalyst, a large antibiotic molecule (vancomycin), and reaction intermediates pertinent to the chemistry of the ionosphere. First, we demonstrate how site-specific isotopic substitution can be used to identify bands due to local functional groups in a protonated tripeptide designed to stereoselectively catalyze bromination of biaryl substrates. This procedure directly reveals the particular H-bond donor and acceptor groups that enforce the folded structure of the bare ion as well as provide contact points for noncovalent interaction with substrates. We then show how photochemical hole-burning involving only vibrational excitations can be used in a double-resonance mode to systematically disentangle overlapping spectra that arise when several conformers of a dipeptide are prepared in the ion source. Finally, we highlight our ability to systematically capture reaction intermediates and spectroscopically characterize their structures. Through this method, we can identify the pathway for water-network-mediated, proton-coupled transformation of nitrosonium, NO(+) to HONO, a key reaction controlling the cations present in the ionosphere. Through this work, we reveal the critical role played by water molecules occupying the second solvation shell around the ion, where they stabilize the emergent product ion in a fashion reminiscent of the s...
We present infrared photodissociation spectra of two protonated peptides that are cooled in a ~10 K quadrupole ion trap and “tagged” with weakly bound H2 molecules. Spectra are recorded over the range 600 – 4300 cm−1 using a table-top laser source, and are shown to result from one-photon absorption events. This arrangement is demonstrated to recover sharp (Δν~6 cm−1) transitions throughout the fingerprint region, despite the very high density of vibrational states in this energy range. The fundamentals associated with all of the signature N-H and C=O stretching bands are completely resolved. To address the site-specificity of the C=O stretches near 1800 cm−1, we incorporated one 13C into the tripeptide. The labeling affects only one line in the complex spectrum, indicating that each C=O oscillator contributes a single distinct band, effectively “reporting” its local chemical environment. For both peptides, analysis of the resulting band patterns indicates that only one isomeric form is generated upon cooling the ions initially at room temperature into the H2 tagging regime.
The harmonic approximation provides a powerful approach for interpreting vibrational spectra. In this treatment, the energy and intensity of the 3N- 6 normal modes are calculated using a quadratic expansion of the potential energy and a linear expansion of the dipole moment surfaces, respectively. In reality, transitions are often observed that are not accounted for by this approach (e.g. combination bands, overtones, etc.), and these transitions arise from inherent anharmonicities present in the system. One interesting example occurs in the vibrational spectrum of H(2)O((l)), where a band is observed near 2000 cm(-1) that is commonly referred to as the "association band". This band lies far from the expected bend and stretching modes of the water molecule, and is not recovered at the harmonic level. In a recent study, we identified a band in this spectral region in gas-phase clusters involving atomic and molecular adducts to the H(3)O(+) ion. In the current study we probe the origins of this band through a systematic analysis of the argon-predissociation spectra of H(3)O(+)·X(3) where X = Ar, CH(4), N(2) or H(2)O, with particular attention to the contributions from the non-linearities in the dipole surfaces, often referred to as non-Condon effects. The spectra of the H(3)O(+) clusters all display strong transitions between 1900-2100 cm(-1), and theoretical modeling indicates that they can be assigned to a combination band involving the HOH bend and frustrated rotation of H(3)O(+) in the solvent cage. This transition derives its oscillator strength entirely from strong non-Condon effects, and we discuss its possible relationship to the association band in the spectrum of liquid water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.