Solandelactones A, B, E, and F were synthesized using Nozaki-Hiyama-Kishi coupling of iododiene 13 with aldehydes 14 and 99 obtained by oxidation of alcohols 92 and 94. Key steps in the synthesis of 92 and 94 were (i) a Nagao asymmetric acetate aldol reaction of aldehyde 77 with thionothiazolidine 78 to set in place an alcohol that becomes the (7 S) lactone center of solandelactones, (ii) a Simmons-Smith cyclopropanation of 80 directed by this alcohol, and (iii) Petasis methylenation of cyclic carbonate 90 in tandem with a Claisen rearrangement that generates the octenalactone portion of solandelactones. Synthesis of solandelactones A, B, E, and F confirmed their gross structure and absolute configuration at C7, 8, 10, and 14 but showed that alcohol configuration at C11 must be reversed in pairs, A/B and E/F, from the previous assignment made to these hydroid metabolites. Thus, solandelactones A and B are correctly represented by 2 and 1, respectively, whereas solandelactones E and F are 6 and 5. A biogenesis of solandelactones is proposed for these C 22 oxylipins that parallels a hypothesis put forward previously to explain the origin of C 20 cyclopropane-containing algal products.
[structure: see text] Two approaches to the synthesis of the aglycon 120 of polycavernoside A (1) were developed, only one of which was completed. The successful "second-generation" route assembled the aglycon seco acids 102 and 106 via Nozaki-Hiyama-Kishi coupling of aldehyde 70, prepared from methyl (S)-3-hydroxy-2-methylpropionate (72) and (S)-pantolactone (73), with vinyl bromide 71. The latter was obtained from a sequence which commenced from the silyl ether 24 of 3-hydroxypropionaldehyde and entailed cyclization of (Z)-zeta-hydroxy-alpha,beta-unsaturated ester 82. Regioselective Yamaguchi lactonization of trihydroxycarboxylic acids 102 and 106 and subsequent functional-group adjustments led to macrolactone 120, to which the fucopyranosylxylopyranoside moiety was attached. Stille coupling of the glycosidated aglycon 128 with dienylstannane 129 furnished polycavernoside A in a synthesis for which the longest linear sequence was 25 steps. The overall yield to lactone 120 was 4.7%.
Asymmetric total syntheses of solandelactones E and F confirmed that hydroxyl configuration at C11 in these oxylipins had been misassigned and that the stereochemistry at this center should be reversed. Key steps in the synthesis involved a Nagao asymmetric acetate aldol reaction, a directed Simmons-Smith cyclopropanation, a Holmes-Claisen rearrangement to establish the unsaturated octalactone, and a Nozaki-Hiyama-Kishi coupling to connect two major fragments at C11-C12.
Solvolysis of asymmetric homoallylic triflates bearing a terminal stannyl substituent gives disubstituted cyclopropanes and bicyclopropanes bearing differentiated termini in high enantiopurity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.