Multidrug Resistant Proteins (MRP) are members of the ATP-binding cassette superfamily that facilitate detoxification by transporting toxic compounds, including chemotherapeutic drugs, out of cells. Chemotherapy, radiation, and other xenobiotic stresses have been shown to increase levels of select MRPs, although, the underlying mechanism remains largely unknown. Additionally, MRP3 is suspected of playing a role in the drug resistance of non-small cell lung carcinoma (NSCLC). Analysis of the MRP3 promoter revealed the presence of multiple putative electrophile responsive elements (EpRE), sequences that suggested possible regulation of this gene by Nrf2, the key transcription factor that binds to EpRE. The goal of this investigation was to determine whether MRP3 induction was dependent upon the transcription factor Nrf2. Keap1, a key regulator of Nrf2, sequesters Nrf2 in the cytoplasm, preventing entry into the nucleus. The electrophilic lipid peroxidation product, 4-hydroxy-2-nonenal (HNE) has been shown to modify Keap1 allowing Nrf2 to enter the nucleus. We found that HNE up-regulated MRP3 mRNA and protein levels in cell lines with wild type Keap1 (human bronchial epithelial cell line HBE1 and the NSCLC cell line H358), but not in the Keap1 mutant NSCLC cell lines (A549 and H460). Cell lines with mutant Keap1 had constitutively higher MRP3 that was not increased by HNE treatment. In HBE1 cells, silencing of Nrf2 with siRNA inhibited induction of MRP3 and by HNE. Finally, we found that silencing Nrf2 also increased the toxicity of cisplatin in H358 cells. The combined results therefore support the hypothesis that MRP3 induction by HNE involves Nrf2 activation.
We previously demonstrated H2 relaxin (RLN2) facilitates castrate resistant (CR) growth of prostate cancer (CaP) cells through PI3K/Akt/β-catenin-mediated activation of the androgen receptor (AR) pathway. As inhibition of this pathway caused only ~50% reduction in CR growth, the goal of the current study was to identify additional RLN2-activated pathways that contribute to CR growth. Next-generation sequencing (NGS)-based transcriptome and gene ontology (GO) analyses comparing LNCaP stably transfected with RLN2 (LNCaP-RLN2) versus LNCaP-vector identified differential expression of genes associated with cell proliferation (12.7% of differentially expressed genes), including genes associated with the cAMP/PKA and NFκB pathways. Subsequent molecular analyses confirmed that the cAMP/PKA and NFκB pathways play a role in facilitating H2 relaxin-mediated CR growth of CaP cells. Inhibition of PKA attenuated RLN2-mediated AR activity, inhibited proliferation and caused a small but significant increase in apoptosis. Combined inhibition of the PKA and NFκB signaling pathways via inhibition of PKA and Akt induced significant apoptosis and dramatically reduced clonogenic potential, outperforming docetaxel, the standard of care treatment for CR CaP. Immunohistochemical (IHC) analysis of tissue microarrays (TMA) in combination with multispectral quantitative imaging comparing RLN2 levels in patients with BPH, PIN and CaP determined that RLN2 is significantly upregulated in CaP vs BPH (p=0.002). The combined data indicate RLN2 overexpression is frequent in CaP patients and provides a growth advantage to CaP cells. A near complete inhibition of RLN2-induced CR growth can be achieved by simultaneous blockade of both pathways.
Most non-Hodgkin's lymphomas (NHL) initially respond to chemotherapy, but relapse is common and treatment is often limited by chemotherapy-related toxicity. Bortezomib, is a highly selective proteasome inhibitor with anti-NHL activity; it is currently FDA approved for second-line treatment of mantle cell lymphoma (MCL). Bortezomib exerts its activity in part through the generation of reactive oxygen species (ROS) and also by the induction of apoptosis.We previously validated CD22 as a potential target in treating NHL and have shown that the anti-CD22 ligand blocking antibody, HB22.7, has significant independent lymphomacidal properties in NHL xenograft models. We sought to determine whether or not these agents would work synergistically to enhance cytotoxicity. Our results indicate that treatment of NHL cell lines with HB22.7 six hours prior to bortezomib significantly diminished cell viability. These effects were not seen when the agents were administered alone or when bortezomib was administered prior to HB22.7. Additionally, HB22.7 treatment prior to bortezomib increased apoptosis in part through enhanced ROS generation. Finally, in a mouse xenograft model, administration of HB22.7 followed 24 hours later by bortezomib resulted in 23% smaller tumor volumes and 20% enhanced survival compared to treatment with the reverse sequence. Despite the increased efficacy of HB22.7 treatment followed by bortezomib, there was no corresponding decrease in peripheral blood cell counts, indicating no increase in toxicity. Our results suggest that pre-treatment with HB22.7 increases bortezomib cytotoxicity, in part through increased reactive oxygen species and apoptosis, and that this sequential treatment combination has robust efficacy in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.