Orexins (hypocretins) are a pair of neuropeptides implicated in energy homeostasis and arousal. Recent reports suggest that loss of orexin-containing neurons occurs in human patients with narcolepsy. We generated transgenic mice in which orexin-containing neurons are ablated by orexinergic-specific expression of a truncated Machado-Joseph disease gene product (ataxin-3) with an expanded polyglutamine stretch. These mice showed a phenotype strikingly similar to human narcolepsy, including behavioral arrests, premature entry into rapid eye movement (REM) sleep, poorly consolidated sleep patterns, and a late-onset obesity, despite eating less than nontransgenic littermates. These results provide evidence that orexin-containing neurons play important roles in regulating vigilance states and energy homeostasis. Orexin/ataxin-3 mice provide a valuable model for studying the pathophysiology and treatment of narcolepsy.
Neurons containing the neuropeptide orexin (hypocretin) are located exclusively in the lateral hypothalamus and send axons to numerous regions throughout the central nervous system, including the major nuclei implicated in sleep regulation. Here, we report that, by behavioral and electroencephalographic criteria, orexin knockout mice exhibit a phenotype strikingly similar to human narcolepsy patients, as well as canarc-1 mutant dogs, the only known monogenic model of narcolepsy. Moreover, modafinil, an anti-narcoleptic drug with ill-defined mechanisms of action, activates orexin-containing neurons. We propose that orexin regulates sleep/wakefulness states, and that orexin knockout mice are a model of human narcolepsy, a disorder characterized primarily by rapid eye movement (REM) sleep dysregulation.
PTEN (phosphatase and tensin homolog deleted on chromosome ten) is a lipid phosphatase that counteracts the function of phosphatidylinositol-3 kinase (PI3K). Loss of function of PTEN results in constitutive activation of AKT and downstream effectors and correlates with many human cancers, as well as various brain disorders, including macrocephaly, seizures, Lhermitte–Duclos disease, and autism. We previously generated a conditional Pten knock-out mouse line with Pten loss in limited postmitotic neurons in the cortex and hippocampus. Pten-null neurons developed neuronal hypertrophy and loss of neuronal polarity. The mutant mice exhibited macrocephaly and behavioral abnormalities reminiscent of certain features of human autism. Here, we report that rapamycin, a specific inhibitor of mammalian target of rapamycin complex 1 (mTORC1), can prevent and reverse neuronal hypertrophy, resulting in the amelioration of a subset of PTEN-associated abnormal behaviors, providing evidence that the mTORC1 pathway downstream of PTEN is critical for this complex phenotype.
Orexin-A and orexin-B are neuropeptides originally identified as endogenous ligands for two orphan G-protein-coupled receptors. Orexin neuropeptides (also known as hypocretins) are produced by a small group of neurons in the lateral hypothalamic and perifornical areas, a region classically implicated in the control of mammalian feeding behavior. Orexin neurons project throughout the central nervous system (CNS) to nuclei known to be important in the control of feeding, sleep-wakefulness, neuroendocrine homeostasis, and autonomic regulation. orexin mRNA expression is upregulated by fasting and insulin-induced hypoglycemia. C-fos expression in orexin neurons, an indicator of neuronal activation, is positively correlated with wakefulness and negatively correlated with rapid eye movement (REM) and non-REM sleep states. Intracerebroventricular administration of orexins has been shown to significantly increase food consumption, wakefulness, and locomotor activity in rodent models. Conversely, an orexin receptor antagonist inhibits food consumption. Targeted disruption of the orexin gene in mice produces a syndrome remarkably similar to human and canine narcolepsy, a sleep disorder characterized by excessive daytime sleepiness, cataplexy, and other pathological manifestations of the intrusion of REM sleep-related features into wakefulness. Furthermore, orexin knockout mice are hypophagic compared with weight and age-matched littermates, suggesting a role in modulating energy metabolism. These findings suggest that the orexin neuropeptide system plays a significant role in feeding and sleep-wakefulness regulation, possibly by coordinating the complex behavioral and physiologic responses of these complementary homeostatic functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.