Whirl flutter is an aeroelastic instability that affects propellers/rotors and the surrounding airframe structure on which they are mounted. Whirl flutter analysis gets progressively more complicated with the addition of nonlinear effects. This paper investigates the impact of nonlinear pylon stiffness on the whirl flutter stability of a basic rotor-nacelle model, compared to a baseline linear stiffness version. The use of suitable nonlinear analysis techniques to address such a nonlinear model is also demonstrated. Three types of nonlinearity were investigated in this paper: cubic softening, cubic hardening and a combined cubic softening-quintic hardening case. The investigation was conducted through a combination of eigenvalue and bifurcation analyses, supplemented by time simulations, in order to fully capture the effects of nonlinear stiffness on the dynamic behaviour of the rotor-nacelle system. The results illustrate the coexistence of stable and unstable limit cycles and equilibria for a range of parameter values in the nonlinear cases, which are not found in the linear baseline model. These branches are connected by a number of different bifurcation types: fold, pitchfork, Hopf, homoclinic and heteroclinic. The results also demonstrate the importance of nonlinear whirl flutter models and analysis methods. Of particular interest are cases where the dynamics of the nacelle are unstable despite linear analysis predicting stable behaviour. A more complete stability envelope for the combined model was generated to take account of this phenomenon.
Tiltrotor aircraft are growing in prevalence due to the usefulness of their unique flight envelope. However, aeroelastic stability—particularly whirl flutter stability—is a major design influence that demands accurate prediction. Several nonlinearities that may be present in tiltrotor systems, such as freeplay, are often neglected for simplicity, either in the modelling or the stability analysis. However, the effects of such nonlinearities can be significant, sometimes even invalidating the stability predictions from linear analysis methods. Freeplay is a nonlinearity that may arise in tiltrotor nacelle rotation actuators due to the tension–compression loading cycles they undergo. This paper investigates the effect of a freeplay structural nonlinearity in the nacelle pitch degree of freedom. Two rotor-nacelle models of contrasting complexity are studied: one represents classical whirl flutter (propellers) and the other captures the main effects of tiltrotor aeroelasticity (proprotors). The manifestation of the freeplay in the systems’ dynamical behaviour is mapped out using Continuation and Bifurcation Methods, and consequently the change in the stability boundary is quantified. Furthermore, the effects on freeplay behaviour of (a) model complexity and (b) deadband edge sharpness are studied. Ultimately, the freeplay nonlinearity is shown to have a complex effect on the dynamics of both systems, even creating the possibility of whirl flutter in parameter ranges that linear analysis methods predict to be stable. While the size of this additional whirl flutter region is finite and bounded for the basic model, it is unbounded for the higher complexity model.
Whirl flutter is an aeroelastic instability that affects aircraft with propellers/rotors. With their long and flexible rotor blades, tiltrotor aircraft are particularly susceptible. Whirl flutter is known to have destroyed aircraft and in the best case it constitutes a fatigue hazard. The complexity of whirl flutter analysis increases significantly with the addition of nonlinearities, due to the more complex dynamical behaviours that emerge as a result. Most whirl flutter stability analyses in current literature are grounded in linear theory, preventing the full discovery of the nonlinearities’ effects. Continuation and bifurcation methods (CBM) may instead be used to fully appreciate and analyse the effects of the presence of nonlinearities. Previous CBM-based work on nonlinear gimballed hub rotor-nacelle models, representing those found on tiltrotor aircraft, are capable of whirl flutter in parametric regions declared safe by linear analysis. Furthermore, it was found that they are capable of complex behaviours including limit cycle oscillations, quasi-periodic behaviour and even chaos, though the whirl flutter implications of such behaviours has not been explored. This paper investigates the impact of a smooth structural nonlinearity on the whirl flutter stability of a basic gimballed rotor-nacelle model, compared to its baseline linear stiffness version. A 9-DoF model with quasi-steady aerodynamics, a flexible wing and blades that can move both cyclically and collectively in both flapping and lead-lag motions, producing gimbal flap-like behaviour, was adopted from existing literature. A smooth stiffness nonlinearity was introduced in the blade flapping stiffness and CBM was used to find the new whirl flutter behaviours created by the presence of the nonlinearity. Time simulations, Poincaré sections and spectral analysis were then used to investigate the various behaviours found. This in turn allowed recommendations to be made concerning preferable and/or hazardous parameter combinations of use to the tiltrotor designer.
Whirl flutter is an aeroelastic instability that affects propellers/rotors and the aircraft on which they are mounted. The complexity of its behaviour and analysis increases significantly with the addition of nonlinear effects. With their long and flexible rotor blades, tiltrotor aircraft are particularly susceptible. This paper investigates the impact of structural nonlinearity on the whirl flutter stability of a basic gimballed rotor-nacelle model, compared to a baseline linear stiffness version. A 9-DoF model with quasi-steady aerodynamics and blades that can move both cyclically and collectively in both flapping and lead-lag motions was adopted from existing literature. The nonlinearities investigated in this paper are cubic and quintic softening and hardening introduced to the gimbal flapping stiffness. The investigation is conducted through a combination of bifurcation and eigenvalue analyses, supplemented by time simulations. In some cases, the nonlinearities are shown to cause whirl flutter behaviour to exist in parameter value regions that are predicted to be stable by linear analysis. This impact is fully captured in the redrawn system stability boundary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.