We introduce the GALEX Arecibo SDSS Survey (GASS), an on‐going large programme that is gathering high quality H i‐line spectra using the Arecibo radio telescope for an unbiased sample of ∼1000 galaxies with stellar masses greater than 1010 M⊙ and redshifts 0.025 < z < 0.05, selected from the Sloan Digital Sky Survey (SDSS) spectroscopic and Galaxy Evolution Explorer (GALEX) imaging surveys. The galaxies are observed until detected or until a low gas mass fraction limit (1.5–5 per cent) is reached. This paper presents the first Data Release, consisting of ∼20 per cent of the final GASS sample. We use this data set to explore the main scaling relations of the H i gas fraction with galaxy structure and NUV−r colour. A large fraction (∼60 per cent) of the galaxies in our sample are detected in H i. Even at stellar masses above 1011 M⊙, the detected fraction does not fall below ∼40 per cent. We find that the atomic gas fraction MH i/M★ decreases strongly with stellar mass, stellar surface mass density and NUV−r colour, but is only weakly correlated with the galaxy bulge‐to‐disc ratio (as measured by the concentration index of the r‐band light). We also find that the fraction of galaxies with significant (more than a few per cent) H i decreases sharply above a characteristic stellar surface mass density of 108.5 M⊙ kpc−2. The fraction of gas‐rich galaxies decreases much more smoothly with stellar mass. One of the key goals of GASS is to identify and quantify the incidence of galaxies that are transitioning between the blue, star‐forming cloud and the red sequence of passively evolving galaxies. Likely transition candidates can be identified as outliers from the mean scaling relations between MH i/M★ and other galaxy properties. We have fitted a plane to the two‐dimensional relation between the H i mass fraction, stellar surface mass density and NUV−r colour. Interesting outliers from this plane include gas‐rich red sequence galaxies that may be in the process of regrowing their discs, as well as blue, but gas‐poor spirals.
We report the large effort that is producing comprehensive high-level young star cluster (YSC) catalogs for a significant fraction of galaxies observed with the Legacy ExtraGalactic UV Survey (LEGUS) Hubble treasury program. We present the methodology developed to extract cluster positions, verify their genuine nature, produce multiband photometry (from NUV to NIR), and derive their physical properties via spectral energy distribution fitting analyses. We use the nearby spiral galaxy NGC 628 as a test case for demonstrating the impact that LEGUS will have on our understanding of the formation and evolution of YSCs and compact stellar associations within their host galaxy. Our analysis of the cluster luminosity function from the UV to the NIR finds a steepening at the bright end and at all wavelengths suggesting a dearth of luminous clusters. The cluster mass function of NGC 628The 1 is consistent with a power-law distribution of slopes~-2 and a truncation of a few times 10 5 M . After their formation, YSCs and compact associations follow different evolutionary paths. YSCs survive for a longer time frame, confirming their being potentially bound systems. Associations disappear on timescales comparable to hierarchically organized star-forming regions, suggesting that they are expanding systems. We find massindependent cluster disruption in the inner region of NGC 628, while in the outer part of the galaxy there is little or no disruption. We observe faster disruption rates for low mass (10 4 M ) clusters, suggesting that a massdependent component is necessary to fully describe the YSC disruption process in NGC 628.Astrophysical Journal, 841:131 (26pp), 2017 June 1 https:
The Legacy ExtraGalactic UV Survey (LEGUS) is a Cycle 21 Treasury program on the Hubble Space Telescope, aimed at the investigation of star formation and its relation with galactic environment in nearby galaxies, from the scales of individual stars to those of ∼kpc-size clustered structures. Five-band imaging, from the near-ultraviolet to the I-band, with the Wide Field Camera 3, plus parallel optical imaging with the Advanced Camera for Surveys, is being collected for selected pointings of 50 galaxies within the local 12 Mpc. The filters used for the observations with the Wide Field Camera 3 are: F275W(λ2,704Å), F336W(λ3,355Å), F438W(λ4,325Å), F555W(λ5,308Å), and F814W(λ8,024Å); the parallel observations with the Advanced Camera for Surveys use the filters: F435W(λ4,328Å), F606W(λ5,921Å), and F814W(λ8,057Å). The multi-band images are yielding accurate recent ( 50 Myr) star formation histories from resolved massive stars and the extinction-corrected ages and masses of star clusters and associations. The extensive inventories of massive stars and clustered systems will be used to investigate the spatial and temporal evolution of star formation * Einstein Fellow within galaxies. This will, in turn, inform theories of galaxy evolution and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of star formation at high redshift. This paper describes the survey, its goals and observational strategy, and the initial science results. Because LEGUS will provide a reference survey and a foundation for future observations with JWST and with ALMA, a large number of data products are planned for delivery to the community.
We present comprehensive catalogues of hot star candidates in the Milky Way (MW), selected from Galaxy Evolution Explorer (GALEX) far-UV (FUV; 1344-1786 Å) and near-UV (NUV; 1771-2831 Å) imaging. The FUV and NUV photometry allows us to extract the hottest stellar objects, in particular hot white dwarfs (WD), which are elusive at other wavelengths because of their high temperatures and faint optical luminosities. We generated catalogues of UV sources from two GALEX's surveys: All-Sky Imaging Survey (AIS; depth AB magnitude ∼19.9/ 20.8 in FUV/NUV) and Medium-depth Imaging Survey (MIS; depth ∼22.6/22.7 mag). The two catalogues (from GALEX fifth data release) contain 65.3/12.6 million (AIS/MIS) unique UV sources with error NUV 0.5 mag, over 21 435/1579 deg 2 . We also constructed subcatalogues of the UV sources with matched optical photometry from Sloan Digital Sky Survey (SDSS; seventh data release): these contain 0.6/0.9 million (AIS/MIS) sources with errors 0.3 mag in both FUV and NUV, excluding sources with multiple optical counterparts, over an area of 7325/1103 deg 2 . All catalogues are available online. We then selected 28 319 (AIS)/9028 (MIS) matched sources with FUV − NUV < −0.13; this colour cut corresponds to stellar T eff hotter than ∼18 000 K (the exact value varying with gravity). An additional colour cut of NUV−r > 0.1 isolates binaries with largely differing T eff s, and some intruding quasistellar objects (QSOs; more numerous at faint magnitudes). Available spectroscopy for a subsample indicates that hot-star candidates with NUV−r < 0.1 (mostly 'single' hot stars) have negligible contamination by non-stellar objects. We discuss the distribution of sources in the catalogues, and the effects of error and colour cuts on the samples. The density of hot-star candidates increases from high to low Galactic latitudes, but drops on the MW plane due to dust extinction. Our hot-star counts at all latitudes are better matched by MW models computed with an initial-final mass relation (IFMR) that favours lower final masses. The model analysis indicates that the brightest sample is likely composed of WDs located in the thin disc, at typical distances between 0.15 and 1 kpc, while the fainter sample comprises also a fraction of thick disc and halo stars. Proper motion distributions, available only for the bright sample (NUV < 18 mag), are consistent with the kinematics of a thin-disc population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.