Cells must sense extracellular signals and transfer the information contained about their environment reliably to make appropriate decisions. To perform these tasks, cells use signal transduction networks that are subject to various sources of noise. Here, we study the effects on information transfer of two particular types of noise: basal (leaky) network activity and cell-to-cell variability in the componentry of the network. Basal activity is the propensity for activation of the network output in the absence of the signal of interest. We show, using theoretical models of protein kinase signaling, that the combined effect of the two types of noise makes information transfer by such networks highly vulnerable to the loss of negative feedback. In an experimental study of ERK signaling by single cells with heterogeneous ERK expression levels, we verify our theoretical prediction: In the presence of basal network activity, negative feedback substantially increases information transfer to the nucleus by both preventing a near-flat average response curve and reducing sensitivity to variation in substrate expression levels. The interplay between basal network activity, heterogeneity in network componentry, and feedback is thus critical for the effectiveness of protein kinase signaling. Basal activity is widespread in signaling systems under physiological conditions, has phenotypic consequences, and is often raised in disease. Our results reveal an important role for negative feedback mechanisms in protecting the information transfer function of saturable, heterogeneous cell signaling systems from basal activity.cell sensing | MAPK signaling | mutual information | ultrasensitivity | biomolecular networks C ells must sense extracellular concentrations and transfer the information contained about their environment reliably to make appropriate decisions. Understanding the process of information transfer from the biological environment to the nucleus (1) and studying quantitatively how information about the signal is lost along the way are essential in understanding cellular decision-making (2, 3). The signal transduction networks used by cells are subject to various sources of noise, and we are only beginning to explore how these affect the process of information transfer (4, 5). Here we focus, in the context of protein kinase (PK) signaling, on the little-studied effects of two important types of biological noise: cell-to-cell variability in the componentry of the network and basal network activity. The effect on information transfer of cell-to-cell variation (heterogeneity) in the protein componentry of signaling networks remains largely unexplored. Such variation is expected under physiological conditions (6) and underlies the variable responses observed for genetically identical cells exposed to the same stimulus or drug treatment (7-9). By basal activity, we mean the propensity for activation of the signaling system in the absence of the stimulus or signal of interest. Basal activity is widespread in signaling system...
Background The National Early Warning Score (NEWS2) is currently recommended in the UK for the risk stratification of COVID-19 patients, but little is known about its ability to detect severe cases. We aimed to evaluate NEWS2 for the prediction of severe COVID-19 outcome and identify and validate a set of blood and physiological parameters routinely collected at hospital admission to improve upon the use of NEWS2 alone for medium-term risk stratification. Methods Training cohorts comprised 1276 patients admitted to King’s College Hospital National Health Service (NHS) Foundation Trust with COVID-19 disease from 1 March to 30 April 2020. External validation cohorts included 6237 patients from five UK NHS Trusts (Guy’s and St Thomas’ Hospitals, University Hospitals Southampton, University Hospitals Bristol and Weston NHS Foundation Trust, University College London Hospitals, University Hospitals Birmingham), one hospital in Norway (Oslo University Hospital), and two hospitals in Wuhan, China (Wuhan Sixth Hospital and Taikang Tongji Hospital). The outcome was severe COVID-19 disease (transfer to intensive care unit (ICU) or death) at 14 days after hospital admission. Age, physiological measures, blood biomarkers, sex, ethnicity, and comorbidities (hypertension, diabetes, cardiovascular, respiratory and kidney diseases) measured at hospital admission were considered in the models. Results A baseline model of ‘NEWS2 + age’ had poor-to-moderate discrimination for severe COVID-19 infection at 14 days (area under receiver operating characteristic curve (AUC) in training cohort = 0.700, 95% confidence interval (CI) 0.680, 0.722; Brier score = 0.192, 95% CI 0.186, 0.197). A supplemented model adding eight routinely collected blood and physiological parameters (supplemental oxygen flow rate, urea, age, oxygen saturation, C-reactive protein, estimated glomerular filtration rate, neutrophil count, neutrophil/lymphocyte ratio) improved discrimination (AUC = 0.735; 95% CI 0.715, 0.757), and these improvements were replicated across seven UK and non-UK sites. However, there was evidence of miscalibration with the model tending to underestimate risks in most sites. Conclusions NEWS2 score had poor-to-moderate discrimination for medium-term COVID-19 outcome which raises questions about its use as a screening tool at hospital admission. Risk stratification was improved by including readily available blood and physiological parameters measured at hospital admission, but there was evidence of miscalibration in external sites. This highlights the need for a better understanding of the use of early warning scores for COVID.
Managing healthcare demand and capacity is especially difficult in the context of the COVID-19 pandemic, where limited intensive care resources can be overwhelmed by a large number of cases requiring admission in a short space of time. If patients are unable to access this specialist resource, then death is a likely outcome. In appreciating these 'capacity-dependent' deaths, this paper reports on the clinically-led development of a stochastic discrete event simulation model designed to capture the key dynamics of the intensive care admissions process for COVID-19 patients. With application to a large public hospital in England during an early stage of the pandemic, the purpose of this study was to estimate the extent to which such capacity-dependent deaths can be mitigated through demand-side initiatives involving non-pharmaceutical interventions and supply-side measures to increase surge capacity. Based on information available at the time, results suggest that total capacity-dependent deaths can be reduced by 75% through a combination of increasing capacity from 45 to 100 beds, reducing length of stay by 25%, and flattening the peak demand to 26 admissions per day. Accounting for the additional 'capacity-independent' deaths, which occur even when appropriate care is available within the intensive care setting, yields an aggregate reduction in total deaths of 30%. The modelling tool, which is freely available and open source, has since been used to support COVID-19 response planning at a number of healthcare systems within the
Habitat loss (HL) affects species and their interactions, ultimately altering community dynamics. Yet, a challenge for community ecology is to understand how communities with multiple interaction types—hybrid communities—respond to HL prior to species extinctions. To this end, we develop a model to investigate the response of hybrid terrestrial communities to two types of HL: random and contiguous. Our model reveals changes in stability—temporal variability in population abundances—that are dependent on the spatial configuration of HL. Our findings highlight that habitat area determines the variability of populations via changes in the distribution of species interaction strengths. The divergent responses of communities to random and contiguous HL result from different constraints imposed on individuals’ mobility, impacting diversity and network structure in the random case, and destabilising communities by increasing interaction strength in the contiguous case. Analysis of intermediate HL suggests a gradual transition between the two extreme cases.
ImportanceAn early minimally symptomatic phase is often followed by deterioration in patients with COVID-19 infection. This study shows that the addition of age and a minimal set of common blood tests taken in patients on admission to hospital significantly improves the National Early Warning Score (NEWS2) for risk-stratification of severe COVID disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.