Stem size distribution (SSD), which describes tree frequencies in diameter classes within an area, has a variety of direct and indirect applications that are critical for forest management. In this study, we evaluated which structural characteristics derived from Airborne Laser Scanning (ALS) data were best able to differentiate between unimodal and bimodal stands in a managed boreal mixedwood forest in Alberta, Canada. We then used wall-to-wall ALS data to predict (for 20 m-by-20 m grid cells) the parameters of a Weibull SSD in unimodal cells, and a Finite Mixture Model (FMM) in bimodal cells. The resulting SSDs were evaluated for their fit to ground plot-measured SSDs using an Error Index (EI). We found that the variance of ALS return heights was the best metric for differentiating between unimodal and bimodal stands, with a classification accuracy of 77%. Parameters of both the Weibull and FMM distributions were accurately predicted (r 2~0 .5, Root Mean Square Error (RMSE)~30%), and that differentiating for modality prior to estimating SSD improved the accuracy of estimates (EI of 49.13 with differentiation versus 51.31 without differentiation). Unique to our presented approach is the stratification by SSD modality prior to the modelling of distributions. To achieve this, we apply a threshold to an ALS metric that allows SSD modality to be distinguished for each cell at the landscape level, and this a priori information is then used to ensure that the appropriate distribution is modelled. Our approach is parsimonious and efficient, enabling improved accuracy in SSD estimation across diverse landscapes when ALS data is the sole data source.
& Key Message This study showed that digital terrestrial photogrammetry is able to produce accurate estimates of stem volume and diameter across a range of species and tree sizes that showed strong correspondence when compared with traditional inventory techniques. This paper demonstrates the utility of the technology for characterizing trees in complex habitats such as boreal mixedwood forests. & Context Accurate knowledge of tree stem taper and volume are key components of forest inventories to manage and study forest resources. Recent developments have seen the increasing use of ground-based point clouds, including from digital terrestrial photogrammetry (DTP), to provide accurate estimates of these key forest attributes. & Aims In this study, we evaluated the utility of DTP based on a small set of photos (12 per tree) for estimating stem volume and taper on a set of 15 trees from 6 different species (Populus tremuloides, Picea glauca, Pinus contorta latifolia, Betula papyrifera, Picea mariana, Abies balsamea) in a boreal mixedwood forest in Alberta, Canada. & Methods We constructed accurate photogrammetric point clouds and derived taper and volume from three point cloud-based methods, which were then compared with estimates from conventional, field-based measurements. All methods were evaluated for their accuracy based on field-measured taper and volume of felled trees. & Results Of the methods tested, we found that the point cloud-derived diameters in a taper curve matching approach performed the best at estimating diameters at the lowest parts of the stem (< 30% of total tree height), while using known DBH and height provided more accurate estimates for the upper parts of the stem (> 50% of total height). Using the field-measured DBH and height as inputs to calculate stem volume yielded the most accurate predictions; however, these were not significantly different from the best point cloud-based estimates. & Conclusion The methodology confirmed that using a small set of photographs provided accurate estimates of individual tree DBH, taper, and volume across a range of species and size gradients (10.8-40.4 cm DBH).
Tree diameter distributions are essential for the calculation of stem volume and biomass, as well as simulation of growth and yield and to understand timber assortments. Accurate and reliable prediction of tree diameter distributions is critical for optimizing forest structure compositions, scheduling silvicultural operations and promoting sustainable management. In this study, we investigated the potential of airborne Light Detection and Ranging (LiDAR) data for predicting tree diameter distributions using a bimodal finite mixture model (FMM) and a multimodal k-nearest neighbor (KNN) model (compared to the unimodal Weibull model (UWM)) over a subtropical planted forest in southern China. To do so, we first evaluated the capability of various LiDAR predictions (i.e., the bimodality coefficient (BC) and Lorenz-based indicators) to stratify forest structural types into unimodal and multimodal stands. Once the best LiDAR prediction for the differentiation was determined, the parameters of UWM (in non-specific and species-specific models) and FMM (in structure-specific models) were estimated by LiDAR-derived metrics and the tree diameter distributions of stands were generated by the estimated LiDAR parameters. When KNN was applied for constructing diameter distributions, optimal KNN strategies, including number of neighbors k, response configurations and imputation methods (i.e., Most Similar Neighbor (MSN) and Random Forest (RF)) for different species were heuristically determined. Finally, the predictive performance of estimated LiDAR the parameters of UWM, FMM and KNN for predicting diameter distributions were assessed. The results showed that LiDAR-predicted Lorenz-based indicators performed best for differentiation. Parameters of UWM and FMM were predicted well and the species-specific models had higher accuracies than the non-specific models. Overall, RF imputation from KNN with an optimal response set (i.e., DBH) were was stable than MSN imputation when k = 5 neighbors. In addition, the inclusion of bimodal FMM for differentiated all plots generally produced a more accurate result (Mean eR = 40.85, Mean eP = 0.20) than multimodal KNN (Mean eR = 52.19, Mean eP = 0.26), whereas the UWM produced the lowest performance (Mean eR = 52.31, Mean eP = 0.26). This study demonstrated the benefits of multimodal models with LiDAR for estimating diameter distributions for supporting forest inventory and sustainable forest management in subtropical planted forests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.