The Zambian market has witnessed an impressive upsurge in the production and consumption of a variety of soaps in recent years. However, there is scant, if any, knowledge of the quality and safety of these soaps. In this undertaking, the quality of some selected soaps was evaluated. The soap samples were randomly obtained from various supermarkets. The qualities of soaps were assessed based on the following physicochemical parameters: free caustic alkali (FCA), moisture content (MC), total fatty matter (TFM), pH and total alkali content (TAC). Upon analysis, a variation in these physicochemical properties was observed. Percent MC ranged between 6.70% ± 0.06% and 18.13% ± 0.13%. Solo and Yebo recorded the highest MC. The pH values ranged from 10.70 ± 0.02 to 12.23% ± 0.01%. Yet again, Yebo had the highest pH followed by Solo and then Romeo. The TAC was between 2.00% ± 0.06% to 2.40% ± 0.01% and FCA values were from 0.00 to 0.021% ± 0.00%. Romeo had the highest TAC value (2.40% ± 0.01%) followed by Dettol (2.31% ± 0.05%). Only Solo and Yebo showed some traces of FCA. On the other hand, TFM values ranged from 51.60% ± 0.60% to 78.15% ± 1.66%. Romeo recorded the highest TFM value (78.15% ± 1.66%) and Yebo recorded the lowest (51.60% ± 0.60%). On average, most soaps analysed herein were of fairly acceptable quality and are fit for use.
Recently, there has been an upsurge in the extent to which electrochemiluminescence (ECL) working in synergy with bipolar electrochemistry (BPE) is being applied in simple biosensing devices, especially in a clinical setup. The key objective of this particular write-up is to present a consolidated review of ECL-BPE, providing a three-dimensional perspective incorporating its strengths, weaknesses, limitations, and potential applications as a biosensing technique. The review encapsulates critical insights into the latest and novel developments in the field of ECL-BPE, including innovative electrode designs and newly developed, novel luminophores and co-reactants employed in ECL-BPE systems, along with challenges, such as optimization of the interelectrode distance, electrode miniaturization and electrode surface modification for enhancing sensitivity and selectivity. Moreover, this consolidated review will provide an overview of the latest, novel applications and advances made in this field with a bias toward multiplex biosensing based on the past five years of research. The studies reviewed herein, indicate that the technology is rapidly advancing at an outstanding purse and has an immense potential to revolutionize the general field of biosensing. This perspective aims to stimulate innovative ideas and inspire researchers alike to incorporate some elements of ECL-BPE into their studies, thereby steering this field into previously unexplored domains that may lead to unexpected, interesting discoveries. For instance, the application of ECL-BPE in other challenging and complex sample matrices such as hair for bioanalytical purposes is currently an unexplored area. Of great significance, a substantial fraction of the content in this review article is based on content from research articles published between the years 2018 and 2023.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.