High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1–4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.
The DNA-binding protein PRDM9 has a critical role in specifying meiotic recombination hotspots in mice and apes, but appears to be absent from other vertebrate species, including birds. To study the evolution and determinants of recombination in species lacking PRDM9, we inferred fine-scale genetic maps from population resequencing data for two bird species, the zebra finch Taeniopygia guttata and the long-tailed finch Poephila acuticauda. We find that both species have hotspots, which are enriched near functional genomic elements. Unlike in mice and apes, the two species share most hotspots, with conservation seemingly extending over tens of millions of years. These observations suggest that in the absence of PRDM9, recombination targets functional features that both enable access to the genome and constrain its evolution.
SUMMARY A major challenge in biology is to understand the genetic basis of adaptation. One compelling idea is that groups of tightly linked genes (i.e. ‘supergenes’ [1, 2]) facilitate adaptation in suites of traits that determine fitness. Despite their likely importance, little is known about how alternate supergene alleles arise and become differentiated, nor their ultimate fate within species. Herein we address these questions by investigating the evolutionary history of a supergene in white-throated sparrows, Zonotrichia albicollis. This species comprises two morphs, tan and white, that differ in pigmentation and components of social behavior [3–5]. Morph is determined by alternative alleles at a balanced >100Mb inversion-based supergene, providing a unique system for studying gene-behavior relationships. Using over two decades of field data we document near-perfect disassortative mating among morphs, as well as the fitness consequences of rare assortative mating. We use de novo whole genome sequencing coupled with population- and phylo-genomic data, to show that alternate supergene alleles are highly divergent at over 1,000 genes, that these alleles originated prior to the split of Z. albicollis from its sister species, and may be polymorphic in Z. albicollis due to a past hybridization event. We provide evidence that the ‘white' allele may be degrading, similar to neo-Y/Wsex chromosomes. We further show that the ‘tan’ allele has surprisingly low levels of genetic diversity, yet does not show several canonical signatures of recurrent positive selection. We discuss these results in the context of the origin, molecular evolution, and possible fate of this remarkable polymorphism.
Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1–4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families—including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.
The large body of theory on speciation with gene flow has brought to light fundamental differences in the effects of two types of mating rules on speciation: preference/trait rules, in which divergence in both (female) preferences and (male) mating traits is necessary for assortment, and matching rules, in which individuals mate with like individuals on the basis of the presence of traits or alleles that they have in common. These rules can emerge from a variety of behavioral or other mechanisms in ways that are not always obvious. We discuss the theoretical properties of both types of rules and explain why speciation is generally thought to be more likely under matching rather than preference/trait rules. We furthermore discuss whether specific assortative mating mechanisms fall under a preference/trait or matching rule, present empirical evidence for these mechanisms, and propose empirical tests that could distinguish between them. The synthesis of the theoretical literature on these assortative mating rules with empirical studies of the mechanisms by which they act can provide important insights into the occurrence of speciation with gene flow. Finally, by providing a clear framework we hope to inspire greater alignment in the ways that both theoreticians and empiricists study mating rules and how these rules affect speciation through maintaining or eroding barriers to gene flow among closely related species or populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.