SUMMARY A major challenge in biology is to understand the genetic basis of adaptation. One compelling idea is that groups of tightly linked genes (i.e. ‘supergenes’ [1, 2]) facilitate adaptation in suites of traits that determine fitness. Despite their likely importance, little is known about how alternate supergene alleles arise and become differentiated, nor their ultimate fate within species. Herein we address these questions by investigating the evolutionary history of a supergene in white-throated sparrows, Zonotrichia albicollis. This species comprises two morphs, tan and white, that differ in pigmentation and components of social behavior [3–5]. Morph is determined by alternative alleles at a balanced >100Mb inversion-based supergene, providing a unique system for studying gene-behavior relationships. Using over two decades of field data we document near-perfect disassortative mating among morphs, as well as the fitness consequences of rare assortative mating. We use de novo whole genome sequencing coupled with population- and phylo-genomic data, to show that alternate supergene alleles are highly divergent at over 1,000 genes, that these alleles originated prior to the split of Z. albicollis from its sister species, and may be polymorphic in Z. albicollis due to a past hybridization event. We provide evidence that the ‘white' allele may be degrading, similar to neo-Y/Wsex chromosomes. We further show that the ‘tan’ allele has surprisingly low levels of genetic diversity, yet does not show several canonical signatures of recurrent positive selection. We discuss these results in the context of the origin, molecular evolution, and possible fate of this remarkable polymorphism.
BackgroundGenomic studies in non-domestic avian models, such as the California condor and white-throated sparrow, can lead to more comprehensive conservation plans and provide clues for understanding mechanisms affecting genetic variation, adaptation and evolution.Developing genomic tools and resources including genomic libraries and a genetic map of the California condor is a prerequisite for identification of candidate loci for a heritable embryonic lethal condition. The white-throated sparrow exhibits a stable genetic polymorphism (i.e. chromosomal rearrangements) associated with variation in morphology, physiology, and behavior (e.g., aggression, social behavior, sexual behavior, parental care).In this paper we outline the utility of these species as well as report on recent advances in the study of their genomes.ResultsGenotyping of the condor resource population at 17 microsatellite loci provided a better assessment of the current population's genetic variation. Specific New World vulture repeats were found in the condor genome. Using condor BAC library and clones, chicken-condor comparative maps were generated. A condor fibroblast cell line transcriptome was characterized using the 454 sequencing technology.Our karyotypic analyses of the sparrow in combination with other studies indicate that the rearrangements in both chromosomes 2m and 3a are complex and likely involve multiple inversions, interchromosomal linkage, and pleiotropy. At least a portion of the rearrangement in chromosome 2m existed in the common ancestor of the four North American species of Zonotrichia, but not in the one South American species, and that the 2m form, originally thought to be the derived condition, might actually be the ancestral one.ConclusionMining and characterization of candidate loci in the California condor using molecular genetic and genomic techniques as well as linkage and comparative genomic mapping will eventually enable the identification of carriers of the chondrodystrophy allele, resulting in improved genetic management of this disease.In the white-throated sparrow, genomic studies, combined with ecological data, will help elucidate the basis of genic selection in a natural population. Morphs of the sparrow provide us with a unique opportunity to study intraspecific genomic differences, which have resulted from two separate yet linked evolutionary trajectories. Such results can transform our understanding of evolutionary and conservation biology.
Recent literature has revealed the importance of variation in neuropeptide receptor gene sequences in the regulation of behavioral phenotypic variation. Here we focus on polymorphisms in the oxytocin receptor gene (OXTR) and vasopressin receptor gene 1a (Avpr1a) in chimpanzees and bonobos. In humans, a single nucleotide polymorphism (SNP) in the third intron of OXTR (rs53576 SNP (A/G)) is linked with social behavior, with the risk allele (A) carriers showing reduced levels of empathy and prosociality. Bonobos and chimpanzees differ in these same traits, therefore we hypothesized that these differences might be reflected in variation at the rs53576 position. We sequenced a 320 bp region surrounding rs53576 but found no indications of this SNP in the genus Pan. However, we identified previously unreported SNP variation in the chimpanzee OXTR sequence that differs from both humans and bonobos. Humans and bonobos have previously been shown to have a more similar 5′ promoter region of Avpr1a when compared to chimpanzees, who are polymorphic for the deletion of ∼360 bp in this region (+/− DupB) which includes a microsatellite (RS3). RS3 has been linked with variation in levels of social bonding, potentially explaining part of the interspecies behavioral differences found in bonobos, chimpanzees and humans. To date, results for bonobos have been based on small sample sizes. Our results confirmed that there is no DupB deletion in bonobos with a sample size comprising approximately 90% of the captive founder population, whereas in chimpanzees the deletion of DupB had the highest frequency. Because of the higher frequency of DupB alleles in our bonobo population, we suggest that the presence of this microsatellite may partly reflect documented differences in levels of sociability found in bonobos and chimpanzees.
Despite being closely related, bonobos and chimpanzees show remarkable behavioral differences, the proximate origins of which remain unknown. This study examined the link between behavioral variation and variation in the vasopressin 1a receptor gene (Avpr1a) in bonobos. Chimpanzees are polymorphic for a ~360 bp deletion (DupB), which includes a microsatellite (RS3) in the 5′ promoter region of Avpr1a. In chimpanzees, the DupB deletion has been linked to lower sociability, lower social sensitivity, and higher anxiety. Chimpanzees and bonobos differ on these traits, leading some to believe that the absence of the DupB deletion in bonobos may be partly responsible for these differences, and to the prediction that similar associations between Avpr1a genotypes and personality traits should be present in bonobos. We identified bonobo personality dimensions using behavioral measures (SociabilityB, BoldnessB, OpennessB, ActivityB) and trait ratings (AssertivenessR, ConscientiousnessR, OpennessR, AgreeablenessR, AttentivenessR, ExtraversionR). In the present study we found that all 10 dimensions have nonzero heritabilities, indicating there is a genetic basis to personality, and that bonobos homozygous for shorter RS3 alleles were lower in AttentivenessR and higher in OpennessB. These results suggest that variations in Avpr1a genotypes explain both within and between species differences in personality traits of bonobos and chimpanzees.
Extinction rates are rising, and current conservation technologies may not be adequate for reducing species losses. Future conservation efforts may be aided by the generation of induced pluripotent stem cells (iPSCs) from highly endangered species. Generation of a set of iPSCs from multiple members of a species can capture some of the dwindling genetic diversity of a disappearing species. We generated iPSCs from fibroblasts cryopreserved in the Frozen Zoo Ò : nine genetically diverse individuals of the functionally extinct northern white rhinoceros (Ceratotherium simum cottoni) and two from the closely related southern white rhinoceros (Ceratotherium simum simum). We used a nonintegrating Sendai virus reprogramming method and developed analyses to confirm the cells' pluripotency and differentiation potential. This work is the first step of a long-term interdisciplinary plan to apply assisted reproduction techniques to the conservation of this highly endangered species. Advances in iPSC differentiation may enable generation of gametes in vitro from deceased and nonreproductive individuals that could be used to repopulate the species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.