From the start of a synthetic chemist’s training, experiments are conducted based on recipes from textbooks and manuscripts that achieve clean reaction outcomes, allowing the scientist to develop practical skills and some chemical intuition. This procedure is often kept long into a researcher’s career, as new recipes are developed based on similar reaction protocols, and intuition-guided deviations are conducted through learning from failed experiments. However, when attempting to understand chemical systems of interest, it has been shown that model-based, algorithm-based, and miniaturized high-throughput techniques outperform human chemical intuition and achieve reaction optimization in a much more time- and material-efficient manner; this is covered in detail in this paper. As many synthetic chemists are not exposed to these techniques in undergraduate teaching, this leads to a disproportionate number of scientists that wish to optimize their reactions but are unable to use these methodologies or are simply unaware of their existence. This review highlights the basics, and the cutting-edge, of modern chemical reaction optimization as well as its relation to process scale-up and can thereby serve as a reference for inspired scientists for each of these techniques, detailing several of their respective applications.
Our understanding of the diversity of mammalian life histories is based almost exclusively on eutherian mammals, in which the slow–fast continuum persists even after controlling for effects of body size and phylogeny. In this paper, we use modern comparative methods to test the extent to which this eutherian‐based framework can be extrapolated to metatherian mammals. First, we examine the pattern of covariation among life history traits, and second, we test for correlations between variation in life history and variation in six candidate ecological variables: type of diet, extent of intraspecific competition, risk of juvenile mortality, diurnal pattern of activity, arboreality, and rainfall pattern. Even when controlling for body size and phylogeny, we observe a slow–fast continuum in metatherian mammals. Some parameters involved are different from those identified by studies of eutherians, but the underlying relationships among longevity, fecundity, and age at maturity persist. We also show that overall variation in a key life history variable, reproductive output (measured by annual reproductive rate and litter size), is significantly related to variation in type of diet, with a foliage‐rich diet being associated with low fecundity. This is interesting because, although ecological correlations have been found within some eutherian subgroups, modern comparative approaches have failed to reveal robust ecological correlates of overall life history diversity in eutherians.
Aichi Target 12 of the Convention on Biological Diversity (CBD) aims to ‘prevent extinctions of known threatened species’. To measure its success, we used a Delphi expert elicitation method to estimate the number of bird and mammal species whose extinctions were prevented by conservation action in 1993 - 2020 (the lifetime of the CBD) and 2010 - 2020 (the timing of Aichi Target 12). We found that conservation prevented 21–32 bird and 7–16 mammal extinctions since 1993, and 9–18 bird and 2–7 mammal extinctions since 2010. Many remain highly threatened, and may still become extinct in the near future. Nonetheless, given that ten bird and five mammal species did go extinct (or are strongly suspected to) since 1993, extinction rates would have been 2.9–4.2 times greater without conservation action. While policy commitments have fostered significant conservation achievements, future biodiversity action needs to be scaled up to avert additional extinctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.