The results of both a line-broadening study on a ceria sample and a size-strain round robin on diffraction line-broadening methods, which was sponsored by the Commission on Powder Diffraction of the International Union of Crystallography, are presented. The sample was prepared by heating hydrated ceria at 923 K for 45 h. Another ceria sample was prepared to correct for the effects of instrumental broadening by annealing commercially obtained ceria at 1573 K for 3 h and slowly cooling it in the furnace. The diffraction measurements were carried out with two laboratory and two synchrotron X-ray sources, two constant-wavelength neutron and a time-of-flight (TOF) neutron source. Diffraction measurements were analyzed by three methods: the model assuming a lognormal size distribution of spherical crystallites, Warren-Averbach analysis and Rietveld refinement. The last two methods detected a relatively small strain in the sample, as opposed to the first method. Assuming a strain-free sample, the results from all three methods agree well. The average real crystallite size, on the assumption of a spherical crystallite shape, is 191 (5) Å . The scatter of results given by different instruments is relatively small, although significantly larger than the estimated standard uncertainties. The Rietveld refinement results for this ceria sample indicate that the diffraction peaks can be successfully approximated with a pseudo-Voigt function. In a common approximation used in Rietveld refinement programs, this implies that the size-broadened profile cannot be approximated by a Lorentzian but by a full Voigt or pseudo-Voigt function. In the second part of this paper, the results of the round robin on the size-strain line-broadening analysis methods are presented, which was conducted through the participation of 18 groups from 12 countries. Participants have reported results obtained by analyzing data that were collected on the two ceria samples at seven instruments. The analysis of results received in terms of coherently diffracting, both volume-weighted and area-weighted apparent domain size are reported. Although there is a reasonable agreement, the reported results on the volume-weighted domain size show significantly higher scatter than those on the area-weighted domain size. This is most likely due to a significant number of results reporting a high value of strain. Most of those results were obtained by Rietveld refinement in which the Gaussian size parameter was not refined, thus erroneously assigning size-related broadening to other effects. A comparison of results with the average of the three-way comparative analysis from the first part shows a good agreement.
This work represents the first application of a statistical mechanics based microstructural orthotropic hyperelastic model to pulmonary artery mechanics under normotensive and hypertensive conditions. The model provides an analogy between the entangled network of long molecular chains and the structural protein framework seen in the medial layer, and relates the mechanical response at macro-level to the deformation (entropy change) of individual molecular chains at the micro-level. A finite element approach was adopted to implement the model. Material parameters were determined via comparing model output to measured pressure-stretch results from normotensive and hypertensive trunks and branches obtained from a rat model of pulmonary arterial hypertension. Results from this initial study show that this model appears reasonable for the study of hyperelastic and anisotropic pulmonary artery mechanics. Typical tangent modulus values ranged from 200 to 800 kPa for normotensive arteries-this increased to beyond 1 MPa for hypertensive vessels. Our study also provokes the hypothesis that increase of cross-linking density may be one mechanism by which the pulmonary artery stiffens in hypertension.
Changes in the compliance properties of large blood vessels are critical determinants of ventricular afterload and ultimately dysfunction. Little is known of the mechanical properties of large vessels exhibiting pulmonary hypertension, particularly the trunk and right main artery. We initiated a study to investigate the influence of chronic hypoxic pulmonary hypertension on the mechanical properties of the extrapulmonary arteries of rats. One group of animals was housed at the equivalent of 5000 m elevation for three weeks and the other held at ambient conditions of ~1600 m. The two groups were matched in age and gender. The animals exposed to hypobaric hypoxia exhibited signs of pulmonary hypertension, as evidenced by an increase in the RV/(LV+S) heart weight ratio. The extrapulmonary arteries of the hypoxic animals were also thicker than those of the control population. Histological examination revealed increased thickness of the media and additional deposits of collagen in the adventitia. The mechanical properties of the trunk, and the right and left main pulmonary arteries were assessed; at a representative pressure (7 kPa), the two populations exhibited different quantities of stretch for each section. At higher pressures we noted less deformation among the arteries from hypoxic animals as compared with controls. A four-parameter constitutive model was employed to fit and analyze the data. We conclude that chronic hypoxic pulmonary hypertension is associated with a stiffening of all the extrapulmonary arteries.
Two types of specimen for crack tip opening angle (CTOA) measurement have been investigated for pipeline applications, i.e., the modified double cantilever beam (MDCB) (at NIST) and the drop-weight tear test (DWTT) specimen (at CANMET). Results of effects of specimen types, thicknesses and loading rates on CTOA are summarized and discussed. The main observations include: (i) For both MDCB and DWTT specimens tested at quasi-static loading rate, crack front tunnelling (i.e., with a deep triangular crack-tip shape) was present in high-strength steels; (ii) For DWTT specimens, CTOA values measured optically at the surface were significantly higher than those from the simplified single-specimen method (S-SSM) and those measured at mid-thickness [on sections cut using electric discharge machining (EDM)]; and (iii) CTOA values from surface measurement of MDCB specimens were comparable to those derived from S-SSM of DWTT specimens, but the surface values of DWTT were higher than those of MDCB specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.