Ecosystem management requires information to determine and mitigate adverse impacts of fishing on all ecosystem components. Deep-sea coral and sponge ecosystems often co-occur with fishing activities, and there is considerable research documenting the vulnerability and slow recovery of deep-sea coral and sponge communities to damage. The objective of the present analysis was to construct models that could predict the distribution, abundance and diversity of deep sea corals and sponges in the Aleutian Islands. Generalized additive models were constructed based on bottom trawl survey data collected from 1991 to 2011 and tested on data from 2012. The results showed that deep-sea coral and sponge distributions were strongly influenced by the maximum tidal currents at bottom trawl locations, possibly indicative of reduced sedimentation or increased food-delivery processes near the seafloor in areas of moderate to high current. Depth and location were also important factors affecting the distribution of deep-sea sponges and corals. The analysis resulted in acceptable models of presence or absence for all taxonomic groups and similar fits when models were applied to test data. The best-fitting models of abundance explained between 20 and 25% of the deviance in the abundance data. Current management protects ~50% of the coral and sponge habitat in the Aleutian Islands at depths to 500 m. The models constructed here will allow managers to evaluate ecological versus economic benefits between protecting coral and sponge habitat and allowing commercial fishing by examining the effect of spatial closures on the amount of coral and sponge habitat that is protected.
Describing essential habitat is an important step toward understanding and conserving harvested species in ecosystem-based fishery management. Using data from fishery-independent ichthyoplankton, groundfish surveys, and commercial fisheries observer data, we utilized species distribution modeling techniques to predict habitat-based spatial distributions of federally managed species in Alaska. The distribution and abundance maps were used to refine existing essential fish habitat descriptions for the region. In particular, we used maximum entropy and generalized additive modeling to delineate distribution and abundance of early (egg, larval, and pelagic juvenile) and later (settled juvenile and adult) life history stages of groundfishes and crabs across multiple seasons in three large marine ecosystems (Gulf of Alaska, eastern Bering Sea, and Aleutian Islands) and the northern Bering Sea. We present a case study, featuring Kamchatka flounder (Atheresthes evermanni), from the eastern and northern Bering Sea to represent the >400 habitat-based distribution maps generated for more than 80 unique species–region–season–life-stage combinations. The results of these studies will be used to redescribe essential habitat of federally managed fishes and crabs in Alaska.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.