Mitochondria play a critical role in mediating both apoptotic and necrotic cell death. The mitochondrial permeability transition (mPT) leads to mitochondrial swelling, outer membrane rupture and the release of apoptotic mediators. The mPT pore is thought to consist of the adenine nucleotide translocator, a voltage-dependent anion channel, and cyclophilin D (the Ppif gene product), a prolyl isomerase located within the mitochondrial matrix. Here we generated mice lacking Ppif and mice overexpressing cyclophilin D in the heart. Ppif null mice are protected from ischaemia/reperfusion-induced cell death in vivo, whereas cyclophilin D-overexpressing mice show mitochondrial swelling and spontaneous cell death. Mitochondria isolated from the livers, hearts and brains of Ppif null mice are resistant to mitochondrial swelling and permeability transition in vitro. Moreover, primary hepatocytes and fibroblasts isolated from Ppif null mice are largely protected from Ca2+-overload and oxidative stress-induced cell death. However, Bcl-2 family member-induced cell death does not depend on cyclophilin D, and Ppif null fibroblasts are not protected from staurosporine or tumour-necrosis factor-alpha-induced death. Thus, cyclophilin D and the mitochondrial permeability transition are required for mediating Ca2+- and oxidative damage-induced cell death, but not Bcl-2 family member-regulated death.
Disorders characterized by ischemia/reperfusion (I/R), such as myocardial infarction, stroke, and peripheral vascular disease, continue to be among the most frequent causes of debilitating disease and death. Tissue injury and/or death occur as a result of the initial ischemic insult, which is determined primarily by the magnitude and duration of the interruption in the blood supply, and then subsequent damage induced by reperfusion. During prolonged ischemia, ATP levels and intracellular pH decrease as a result of anaerobic metabolism and lactate accumulation. As a consequence, ATPase-dependent ion transport mechanisms become dysfunctional, contributing to increased intracellular and mitochondrial calcium levels (calcium overload), cell swelling and rupture, and cell death by necrotic, necroptotic, apoptotic, and autophagic mechanisms. Although oxygen levels are restored upon reperfusion, a surge in the generation of reactive oxygen species occurs and proinflammatory neutrophils infiltrate ischemic tissues to exacerbate ischemic injury. The pathologic events induced by I/R orchestrate the opening of the mitochondrial permeability transition pore, which appears to represent a common end-effector of the pathologic events initiated by I/R. The aim of this treatise is to provide a comprehensive review of the mechanisms underlying the development of I/R injury, from which it should be apparent that a combination of molecular and cellular approaches targeting multiple pathologic processes to limit the extent of I/R injury must be adopted to enhance resistance to cell death and increase regenerative capacity in order to effect long-lasting repair of ischemic tissues.
Voltage-dependent anion channels (VDACs) have been implicated as essential mediators of mitochondrial-dependent cell death by functioning as a channel-forming unit within the mitochondrial permeability transition (MPT) pore and the target of Bcl-2 family members. Here we report the effects of deletion of the 3 mammalian Vdac genes on mitochondrial-dependent cell death. Mitochondria from Vdac1-, Vdac3-, and Vdac1/Vdac3-null mice exhibited a Ca 2+ and oxidative stress-induced MPT that was indistinguishable from wildtype mitochondria. Similarly, Ca 2+ and oxidative-stress-induced MPT and cell death was unaltered or even exacerbated in fibroblasts lacking VDAC1, VDAC2, VDAC3, VDAC1/3, and VDAC1/2/3. Wildtype and Vdac-deficient mitochondria and cells also exhibited equivalent cytochrome c release, caspase cleavage, and cell death in response to Bax and Bid activation. These results indicate that VDACs are dispensable for both MPT and Bcl-2 family member-driven cell death.Mitochondria are intracellular organelles that mediate high-energy phosphate production, fatty acid metabolism, porphyrin synthesis, ion homeostasis and apoptotic and necrotic cell death. Apoptotic cell death is mediated by both the "extrinsic" pathway; consisting of death receptor signaling constituents, as well as the "intrinsic" pathway; consisting of pro-death Bcl-2 family members functioning at the level of the mitochondria and endoplasmic reticulum (1). Mitochondria are also critically involved in necrotic cell death following Ca 2+ overload, hypoxia, and oxidative damage, leading to swollen or ruptured mitochondria. The MPT pore, a protein complex that spans both the outer and inner mitochondrial membranes, is considered the mediator of this event and has been hypothesized to minimally consist of the VDAC in the outer membrane, the adenine nucleotide translocase (ANT) in the inner membrane, and cyclophilin-D in the matrix (2-4).The VDAC is comprised of a family of evolutionarily conserved ion channels that are the most abundant proteins in the outer mitochondrial membrane. The physiologic function of VDACs is to control the movement of adenine nucleotides, NADH, and other metabolites across the outer membrane (5,6). However, VDACs have also been proposed to possess a pathological function as mediators of mitochondrial-dependent cell death through formation of the permeability pore (7,8). In addition, VDACs have been proposed to be essential binding partners for pro-apoptotic Bcl-2 family members (9-12), combining to form protein-permeable Here we assessed whether MPT was altered in Vdac1-, Vdac3-, and Vdac1/Vdac3-null mice. Western blotting of cardiac lysates from these mice showed the complete lack of the respective VDAC protein in each line without compensatory alterations in the other VDAC isoforms (Fig. 1a). There were also no significant changes in ANT and cyclophilin D, two other putative components of the MPT pore (Fig. 1a). Cardiac mitochondria isolated from wildtype, Vdac1-, Vdac3-, and Vdac1/Vdac3-null mice were assessed for...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.