Summary The locus coeruleus noradrenergic (LC-NE) system is one of the first systems engaged following a stressful event. While numerous groups have demonstrated that LC-NE neurons are activated by many different stressors, the underlying neural circuitry and the role of this activity in generating stress-induced anxiety has not been elucidated. Using a combination of in vivo chemogenetics, optogenetics, and retrograde tracing we determine that increased tonic activity of the LC-NE system is necessary and sufficient for stress-induced anxiety and aversion. Selective inhibition of LC-NE neurons during stress prevents subsequent anxiety-like behavior. Exogenously increasing tonic, but not phasic, activity of LC-NE neurons is alone sufficient for anxiety-like and aversive behavior. Furthermore, endogenous corticotropin releasing hormone+ (CRH+) LC inputs from the amygdala increase tonic LC activity, inducing anxiety-like behaviors. These studies position the LC-NE system as a critical mediator of acute stress-induced anxiety and offer a potential intervention for preventing stress-related affective disorders.
Dopamine D2-autoreceptors play a key role in regulating the activity of dopamine neurons and control the synthesis, release and uptake of dopamine. These Gi/o-coupled inhibitory receptors play a major part in shaping dopamine transmission. Found at both somatodendritic and axonal sites, autoreceptors regulate the firing patterns of dopamine neurons and control the timing and amount of dopamine released from their terminals in target regions. Alterations in the expression and activity of autoreceptors are thought to contribute to Parkinson’s disease as well as schizophrenia, drug addiction and attention deficit hyperactivity disorder (ADHD), which emphasizes the importance of D2-autoreceptors in regulating the dopamine system. This review will summarize the cellular actions of dopamine autoreceptors and discuss recent advances that have furthered our understanding of the mechanisms by which D2-receptors control dopamine transmission.
The mesolimbic dopamine system, which mediates the rewarding properties of nearly all drugs of abuse, originates in the ventral tegmental area (VTA) and sends major projections to both the nucleus accumbens (NAc) and the basolateral amygdala (BLA). To address whether differences occur between neurons that project to these separate areas, retrograde microspheres were injected to either the BLA or the NAc of DBA/2J mice. Whole-cell recordings were made from labeled VTA dopamine neurons. We found that identified neurons that projected to the BLA and NAc originated within different quadrants of the VTA with neither group exhibiting large-amplitude h-currents. ] enkephalin (ME; 3 M). In addition, we found that the presynaptic inhibition of GABAergic transmission at both GABA A and GABA B receptors was differentially regulated by U69593 between the two groups. When dopamine IPSCs were examined, U69593 caused a greater inhibition in NAc-than BLA-projecting neurons. ME had no effect on either. Finally, the regulation of extracellular dopamine by dopamine uptake transporters was equal across the VTA. These results suggest that opioids differentially inhibit mesolimbic neurons depending on their target projections. Identifying the properties of projecting mesolimbic VTA dopamine neurons is crucial to understanding the action of drugs of abuse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.