The carboxyl-terminal domain, residues 146 to 231, of the human immunodeficiency virus-1 (HIV-1) capsid protein [CA(146-231)] is required for capsid dimerization and viral assembly. This domain contains a stretch of 20 residues, called the major homology region (MHR), which is conserved across retroviruses and is essential for viral assembly, maturation, and infectivity. The crystal structures of CA(146-231) and CA(151-231) reveal that the globular domain is composed of four helices and an extended amino-terminal strand. CA(146-231) dimerizes through parallel packing of helix 2 across a dyad. The MHR is distinct from the dimer interface and instead forms an intricate hydrogen-bonding network that interconnects strand 1 and helices 1 and 2. Alignment of the CA(146-231) dimer with the crystal structure of the capsid amino-terminal domain provides a model for the intact protein and extends models for assembly of the central conical core of HIV-1.
SUMMARY The mature capsids of HIV and other retroviruses organize and package the viral genome and its associated enzymes for delivery into host cells. The HIV capsid is a fullerene cone: a variably curved, closed shell composed of approximately 250 hexamers and exactly 12 pentamers of the viral CA protein. We devised methods for isolating soluble, assembly-competent CA hexamers and derived four crystallographically independent models that define the structure of this capsid assembly unit at atomic resolution. A ring of six CA N-terminal domains form an apparently rigid core, surrounded by an outer ring of C-terminal domains. Mobility of the outer ring appears to be an underlying mechanism for generating the variably curved lattice in authentic capsids. Hexamer-stabilizing interfaces are highly hydrated, and this property may be key to forming quasi-equivalent interactions within hexamers and pentamers. The structures also clarify the molecular basis for capsid assembly inhibition, and should facilitate structure-based drug design strategies.
The HIV-1 capsid protein forms the conical core structure at the center of the mature virion. Capsid also binds the human peptidyl prolyl isomerase, cyclophilin A, thereby packaging the enzyme into the virion. Cyclophilin A subsequently performs an essential function in HIV-1 replication, possibly helping to disassemble the capsid core upon infection. We report the 2.36 A crystal structure of the N-terminal domain of HIV-1 capsid (residues 1-151) in complex with human cyclophilin A. A single exposed capsid loop (residues 85-93) binds in the enzyme's active site, and Pro-90 adopts an unprecedented trans conformation. The structure suggests how cyclophilin A can act as a sequence-specific binding protein and a nonspecific prolyl isomerase. In the crystal lattice, capsid molecules assemble into continuous planar strips. Side by side association of these strips may allow capsid to form the surface of the viral core. Cyclophilin A could then function by weakening the association between capsid strips, thereby promoting disassembly of the viral core.
Ubiquitin-binding domains (UBDs) are a collection of modular protein domains that non-covalently bind to ubiquitin. These recently discovered motifs interpret and transmit information conferred by protein ubiquitylation to control various cellular events. Detailed molecular structures are known for a number of UBDs, but to understand their mechanism of action, we also need to know how binding specificity is determined, how ubiquitin binding is regulated, and the function of UBDs in the context of full-length proteins. Such knowledge will be key to our understanding of how ubiquitin regulates cellular proteins and processes.
The type 1 human immunodeficiency virus (HIV-1) contains a conical capsid comprising approximately 1,500 CA protein subunits, which organizes the viral RNA genome for uncoating and replication in a new host cell. In vitro, CA spontaneously assembles into helical tubes and cones that resemble authentic viral capsids. Here we describe electron cryo-microscopy and image reconstructions of CA tubes from six different helical families. In spite of their polymorphism, all tubes are composed of hexameric rings of CA arranged with approximate local p6 lattice symmetry. Crystal structures of the two CA domains were 'docked' into the reconstructed density, which showed that the amino-terminal domains form the hexameric rings and the carboxy-terminal dimerization domains connect each ring to six neighbours. We propose a molecular model for the HIV-1 capsid that follows the principles of a fullerene cone, in which the body of the cone is composed of curved hexagonal arrays of CA rings and the ends are closed by inclusion of 12 pentagonal 'defects'.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.