In vivo bioluminescent imaging permits the visualization of bacteria in live animals, allowing researchers to monitor, both temporally and spatially, the progression of infection in each animal. We sought to engineer stably luminescent clinical strains of Staphylococcus aureus, with the goal of using such strains in mouse models. The gram-positive shuttle vector pMAD was used as the backbone for an integration plasmid. A chloramphenicol resistance gene, a modified lux operon from Photorhabdus luminescens, and approximately 650 bp of homology to the chromosome of the USA300 S. aureus strain NRS384 were added, generating plasmid pRP1195. Electroporation into strain RN4220 followed by temperature shift led to integration of pRP1195 into the chromosome. The integrated plasmid was transferred to clinical strains by phage transduction. Luminescent strains displayed no in vitro growth defects. Moreover, luminescence was stable in vitro after three rounds of subculture over 48 hours of growth in the absence of antibiotics. Mice were infected with a luminescent strain of NRS384 in skin and intravenous models. In a mouse skin model, luminescent bacteria were present in lesions that formed and cleared over the course of several days, and in an intravenous model, bacteria inoculated in the mouse tail vein were observed spreading to multiple tissues. No statistically significant difference in virulence was observed between NRS384 and the luminescent strain in either infection model. These preliminary data suggest that this luminescent USA300 strain is suitable for use in mouse models. Similar strains were engineered using other sequenced clinical strains. Because these strains are stably luminescent, they should prove useful in animal models of infection.
Shigellosis, an enteric disease, is on the World Health Organization's priority prevention list. In one study, the Shigella sonnei O-specific polysaccharide (O-SP)-protein conjugate showed 72% protection against disease in Israeli army recruits exposed to high rates (8 -14%) of infection. The protection was related to vaccineinduced IgG anti-O-SP levels. Synthetic oligosaccharides of Shigella dysenteriae type 1, bound by their reducing ends to a carrier protein (''sun''-type configuration), induced significantly higher antibody levels than the native O-SP bound to protein by multiplepoint attachments (''lattice''-type configuration). Attempts to synthesize the S. sonnei O-SP based oligosaccharides were not successful. Here, we describe the isolation, characterization, and conjugation of low-molecular-mass O-SP-core (O-SPC) fragments. The O-SPC fragments were bound by their reducing ends similar to the preparation of the synthetic S. dysenteriae type 1 conjugates. The O-SPC conjugates used oxime linkages between the terminal Kdo residues at the reducing ends of the S. sonnei saccharides and aminooxy linkers bound to BSA or a recombinant diphtheria toxin. The coupling reaction was carried out at a neutral pH and room temperature. IgG antibody levels induced in young outbred mice by the S. sonnei O-SPC conjugates were significantly higher then those elicited by the O-SP conjugates. Accordingly, we propose to evaluate clinically these conjugates.lipopolysaccharide ͉ glycoconjugate ͉ vaccine ͉ Kdo ͉ IgG
There is no licensed vaccine for the prevention of shigellosis. Our approach to the development of Shigella vaccine is based on inducing serum IgG antibodies to the O-specific polysaccharide (O-SP) domain of their lipopolysaccharides (LPS). We have shown that low molecular mass O-SP-core (O-SPC) fragments isolated from Shigella sonnei LPS conjugated to proteins induced significantly higher antibody levels in mice than the full length O-SP conjugates. This finding is now extended to the O-SPC of S. flexneri 2a and 6, and S. dysenteriae type 1. The structures of O-SPC, containing core plus 1–4 O-SP repeat units (RU), were analyzed by NMR and mass spectroscopy. The first RUs attached to the cores of S. flexneri 2a and 6 LPS were different from the following RUs in their O-acetylation and/or glucosylation. Conjugates of core plus more than 1 RUs were necessary to induce LPS antibodies in mice. The resulting antibody levels were comparable to those induced by the full length O-SP conjugates. In S. dysenteriae type 1, the first RU was identical to the following RUs, with the exception that the GlcNAc was bound to the core in the β-configuration, while in all other RUs the GlcNAc was present in the α-configuration. In spite of this difference, conjugates of S. dysenteriae type 1 core with 1, 2, or 3 RUs induced LPS antibodies in mice with levels statistically higher than those of the full size O-SP conjugates. O-SPC conjugates are easy to prepare, characterize, and standardize, and their clinical evaluation is planned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.