Phosphorus (P) is an indispensable element for all life on Earth and, during the past decade, concerns about the future of its global supply have stimulated much research on soil P and method development. This review provides an overview of advanced state-of-the-art methods currently used in soil P research. These involve bulk and spatially resolved spectroscopic and spectrometric P speciation methods (1 and 2D NMR, IR, Raman, Q-TOF MS/MS, high resolution-MS, NanoSIMS, XRF, XPS, (µ)XAS) as well as methods for assessing soil P reactions (sorption isotherms, quantum-chemical modeling, microbial biomass P, enzymes activity, DGT, 33P isotopic exchange, 18O isotope ratios). Required experimental set-ups and the potentials and limitations of individual methods present a guide for the selection of most suitable methods or combinations.
BackgroundShip engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling.ObjectivesTo provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols.MethodsThrough an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses.ResultsThe HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon (“soot”). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification.ConclusionsDespite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a reduction of carbonaceous soot in the ship emissions by implementation of filtration devices.
Thermal desorption and pyrolysis of various heavy oils and asphaltenes (precipitated with different paraffinic solvents) were studied. For this purpose evolved gas analysis was realized by hyphenation of a thermobalance to ultrahigh-resolution mass spectrometry (FT-ICR MS). The chemical pattern was preserved by applying soft atmospheric pressure chemical ionization (APCI). Collision induced dissociation (CID) was performed for deeper structural insights. Viscous or solid petroleum samples and fractions can be easily measured by the setup. The SARA fractions (maltenes, C7-asphaltenes, aromatics, saturated, and resins), deployed for evaluation purposes, revealed a very complex molecular pattern, and fractionation drastically increased the number of assigned elemental compositions. Species from m/z 150 to m/z 700 and two main phases (desorption and pyrolysis), which transits at roughly 300–350 °C, are observed. Both phases overlap partially but can be separated by applying matrix factorization. The heavy oil and asphaltene mass spectra are dominated by CH-, CHS-, and CHN-class compounds, whereas for the CID spectra a lower abundance of oxygenated species was found. Furthermore, physicochemical properties and the molecular response were correlated for the heavy oils and asphaltene samples, finding a strong correlation between sulfur content and abundance of CHS x -class compounds as well as between double bond equivalent (DBE) and API gravity. As the CID leads mainly to dealkylation, the length of alkylated side chains of components evolved thermally or by pyrolytic processes can be traced during the temperature ramp. In general, an increase of dealkylation in the desorption phase, followed by a decrease during the transition to pyrolysis and an increase reaching a stable plateau for stable pyrolysis, was detected. This behavior was found to be similar for all asphaltenes and for the mean DBE progression. Deploying a lighter paraffinic solvent for asphaltene precipitation causes a higher abundance of species emitted in the desorption phase. They belong mainly to CHO x -class compounds from the maltene fraction occluded and coprecipitated with the asphaltenes. Besides this, no significant effect of the precipitation solvent on the asphaltenic core structures and molecular pattern in the pyrolysis phase was observed. The DBE distribution suggests the presence of the archipelago asphaltene molecular architecture.
Gaseous and particulate emissions from a ship diesel research engine were elaborately analysed by a large assembly of measurement techniques. Applied methods comprised of offline and online approaches, yielding averaged chemical and physical data as well as time-resolved trends of combustion by-products. The engine was driven by two different fuels, a commonly used heavy fuel oil (HFO) and a standardised diesel fuel (DF). It was operated in a standardised cycle with a duration of 2 h. Chemical characterisation of organic species and elements revealed higher concentrations as well as a larger number of detected compounds for HFO operation for both gas phase and particulate matter. A noteworthy exception was the concentration of elemental carbon, which was higher in DF exhaust aerosol. This may prove crucial for the assessment and interpretation of biological response and impact via the exposure of human lung cell cultures, which was carried out in parallel to this study. Offline and online data hinted at the fact that most organic species in the aerosol are transferred from the fuel as unburned material. This is especially distinctive at low power operation of HFO, where low volatility structures are converted to the particulate phase. The results of this study give rise to the conclusion that a mere switching to sulphur-free fuel is not sufficient as remediation measure to reduce health and environmental effects of ship emissions.
In this study, the asphaltene and corresponding crude oil, distributed within the Asphaltene Characterization Interlaboratory Study for PetroPhase 2017, were characterized on the molecular level. For this purpose, three different thermal analysis mass spectrometry hyphenations with five diverse ionization techniques varying in selectivity were deployed: (1) thermal desorption/pyrolysis gas chromatography electron ionization (TD/Pyr–GC–EI–QMS), (2/3) thermogravimetry single-photon/resonance-enhanced multiphoton ionization time-of-flight (TG SPI/REMPI TOF–MS), and (4/5) thermogravimetry atmospheric pressure photo-/chemical ionization ultrahigh-resolution mass spectrometry (TG APPI/APCI FT-ICR MS). For the investigated C7 asphaltene, no mass loss was detected at <300 °C and the pyrolysis phase was dominant, whereas the parent crude oil exhibits a high abundant desorption phase. At roughly 330 °C, pyrolysis begins and mass loss as well as complex mass spectrometric patterns were recorded. The resulting information on the effluent gained by the different soft ionization mass spectrometric approaches was combined with the GC–EI–MS data for structural cross-evaluation. We showed that the combination of the applied techniques leads to a more comprehensive chemical characterization. For the asphaltene, TG SPI TOF–MS shows high abundances of alkanes, alkenes, and hydrogen sulfide during pyrolysis. TG REMPI TOF–MS is selective toward aromatics and reveals clear patterns of polyaromatic hydrocarbons (PAHs) and minor amounts of nitrogen-containing aromatics tentatively identified as acridine- or carbazol-like structures. GC–EI–MS provides information on the average chain length of alkanes, alkenes, and PA(S)H. Both atmospheric pressure ionization techniques (APPI and APCI) hyphenated to FT–MS showed CHS (in particular, benzothiophenes) and CH as dominant compound classes, with an average number of condensed aromatic rings of 2–4. Combining the information of all techniques, including the average asphaltene mass obtained by field desorption experiments and aromatic core size received by collision-induced dissociation, the archipelago-type molecular structure seems to be dominant for the investigated asphaltene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.