This paper presents a process for analyzing production interference and interwell hydraulic fracturing pressure hits for multi-well horizontal pads in unconventional reservoirs. Ten wells with varied spacing in separate formations are evaluated. The analysis determines the degree of connectivity between the wells to help assess the extent and complexity of the stimulated network. Many of these connections persist through flowback and early production. The results of the study impact decisions regarding well spacing, injection rate, perforation design and frac order.A prescriptive completions program enabled observation of pressure interactions between wells during multi-stage hydraulic fracturing. Wellhead pressures are continuously recorded during all completions and flowback operations. The rate of pressure buildup plus the magnitude and frequency of the inter-well hits are studied. Pressure hits are then compared with production interactions between wells. Connections are mapped to form a comprehensive image of the fracture network.In the pad studied, all wells had multiple hits with varying degrees of communication across the fracture network. Observations confirm that fractures had significant vertical and lateral growth establishing a highly complex network. Interference analysis indicates the connections between wells often diminish over time. As a final validation, the high degree of interaction and fracture overlap are shown to be consistent with high-resolution microseismic observations.Establishing the extent of the effective fracture network is fundamental to deciding design variables. Multi-variable pad designs and production results can only be deciphered when viewed in conjunction with fracture interactions. The process discussed provides a simple way to observe and understand these interactions.
A design of hydraulic fracturing in variably-stressed zones is one of key components for an effective multi-zone, multi-horizontal well pad treatment. In the recent literature, optimum completion strategies catering for stimulation-induced in-situ stress changes are discussed, however, only few of these focus on vertical stress changes and its impact on multi-zone fracture geometries. In this paper, we present an approach to design contained hydraulic fractures in a high stress layers by studying the role of vertical stress shadowing on actual field data. In modeling hydraulic fractures with pseudo-3D models, if fracture simulations are initiated in high stress zones, "artificially" unbounded height growth results in very limited lateral propagation. On the other hand, 3D hydraulic fracturing models are too computationally expensive to optimize large design jobs, for example, in multi-horizontal well pads. In this paper, we employ a Stacked Height Growth Model, whereby fractures are also discretized vertically yet retain the numerical formulation pseudo-3D models. Coupling with finite element stress solvers then allows to identify vertical stress changes in the vicinity of induced hydraulic fractures and to understand the interference between hydraulic fracture sequences and their respective microseismic signatures. Considering a potential combination of fracturing sequences, it was revealed that stress perturbations from the neighboring well hydraulic fractures initiating from low stress layers can be used to increase stress within the same zone and also potentially reduce stresses in higher-stress layers above and below. By modeling and calibrating an actual multi-zone, multi-horizontal stimulation job, we elaborate on the benefits of increasing stress barriers before fracturing in higher-stress layer to avoid the chances of re-fracturing from high stress zones. Regarding hydraulic fracture geometries, we explain our results by analyzing actual microseismic observations with respect to simulated stress patterns after stimulation. We explore the notion of deliberately ordering hydraulic fracture to manage vertical interference and create more contained fractures in a multi-zone horizontal well pad. Fracturing in a higher-stress zone will naturally divert the energy into low stress, potentially unproductive zones. In an effort to manage this phenomenon, this paper presents one of the few data-rich case studies on multi-zone, multi-well engineered stimulation design. The approach shown in this paper can be a helpful reference to understand fracture height growth in the presence of both vertical and horizontal stress shadowing.
This paper presents a multi-disciplinary workflow for analyzing interwell hydraulic fracturing pressure interactions on multi-well horizontal pads in unconventional reservoirs. Over twenty wells in multiple fields with varied spacing across multiple landed zones are evaluated. The workflow provides a method for determining the degree of connectivity between the wells to assess the extent and complexity of the stimulated network. The analysis method provides a cost efficient, timely means of understanding the stimulated network in order to impact decisions regarding well spacing, injection rate, perforation design and frac order.Prescriptive completions programs enable observation of pressure interactions between wells during multi-stage hydraulic fracturing. Wellhead pressures are continuously recorded during all completion and flowback operations. In the observation pads studied, wells experience varying degrees of pressure communication across the fracture network. Pressure hits are grouped by according to identifying characteristics and correlated to microseismic data where available.Characterization of the stimulation network gained from analysis of pressure interactions closely aligns with available high resolution microseismic data. Networks are shown to have significant vertical and lateral growth establishing a highly complex network. Additional insights on the degree of connectivity and the definition of effective fracture network are gained. Results are fundamental to understanding well spacing and zonal placement.
This paper presents well construction details and pressure responses for a slant well in a dry gas shale resource in northern British Columbia, Canada. We will present the drilling and completions plan for a Multi-Stage Hydraulic Fracturing (MSHF) campaign on a ten well half pad including consequences of an aggressive fluid environment. Horn River shale gas development involves Multi-well MSHF horizontal wells from a single surface pad location. The wells are treated sequentially from toe to heel of the horizontal section, alternating between wells. Strategic placement of an Open Hole (OH) slant well equipped with slotted liner, tubing, and pressure data recorders will be presented. Pressure responses during the MSHF campaign will be presented and reviewed against calibrated closure pressure data from Diagnostic Fracture Injection Test (DFIT) data and end of job instantaneous shut-in pressures (ISIP).The initial concept of drilling an OH well placed between MSHF wells was to evaluate the fracture system between stimulated wells and to test whether an unstimulated open hole well placed between stimulated wells can economically produce gas. Other objectives were to provide an Oil Based drilling Mud (OBM) free wellbore that would enable water-based imaging logs. Water-based logs have enhanced ability to identify and map natural fractures. Initial logs would evaluate the natural fractures and subsequent post-completion logs would evaluate the hydraulic fracture transiting the shale resource rock to the OH well. Knowledge of how pre-existing natural fracture networks react to the hydraulic fracture process along with pressure response data recorded from all wells on the pad would be used to provide geoscientists and engineers the means to optimize stimulation programs for horizontal wells and wellbore placement within the various resource reservoirs in the Horn River Basin. This paper will discuss the compromises that were made to the initial conceptual model that maximized learnings from the slant OH wellbore, and how the well was unexpectedly lost. Pressure interference data for future hydraulic fracturing models will be provided along with methods to describe how hydraulic fractures from nearby wells transect a well and interact with various reservoirs exposed within the OH segment of a slant wellbore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.