Conflicting accounts of the role of mathematics in our physical theories can be traced to two principles. Mathematics appears to be both (1) theoretically indispensable, as we have no acceptable non-mathematical versions of our theories, and (2) metaphysically dispensable, as mathematical entities, if they existed, would lack a relevant causal role in the physical world. I offer a new account of a role for mathematics in the physical sciences that emphasizes the epistemic benefits of having mathematics around when we do science. This account successfully reconciles theoretical indispensability and metaphysical dispensability and has important consequences for both advocates and critics of indispensability arguments for platonism about mathematics.
Mark Colyvan uses applications of mathematics to argue that mathematical entities exist. I claim that his argument is invalid based on the assumption that a certain way of thinking about applications, called ‘the mapping account,’ is correct. My main contention is that successful applications depend only on there being appropriate structural relations between physical situations and the mathematical domain. As a variety of non-realist interpretations of mathematics deliver these structural relations, indispensability arguments are invalid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.