Background
Achieving balanced gaps is a key surgical goal in total knee arthroplasty, yet most methods rely on subjective surgeon feel and experience to assess and achieve knee balance intraoperatively. Our objective was to evaluate the ability to quantitatively plan and achieve a balanced knee throughout the range of motion using robotic-assisted instrumentation in a tibia-first, gap-balancing technique.
Methods
A robotic-assisted, gap-balancing technique was used in 121 consecutive knees. After resection of the proximal tibia, a computer-controlled tensioning device was inserted into the knee joint and the pre-femoral-resection knee gaps were acquired dynamically throughout flexion under controlled load. Predicted gap profiles were used to plan the femoral implant by adjusting the implant alignment and position within certain boundaries to achieve a balanced knee throughout the range of flexion. Femoral cuts were then made according to this plan using a miniature robotic-assisted cutting guide. The tensioning device used to measure the pre-femoral-resection gaps was then reinserted into the joint to quantify the final gap balance under known tension. The final gap profiles were then compared with the predictive gap plans.
Results
The overall root mean square error between the predicted and achieved gaps was 1.3 mm and 1.5 mm for the medial and lateral sides, respectively. Use of robotic assistance resulted in over 90% of knees having mediolateral balance within 2 mm across the flexion range. Gaps at 0° flexion were 2 mm smaller than the gaps at 90°. This difference decreased to less than 1 mm when comparing the tibiofemoral gaps at 10°, 45°, and 90°.
Conclusions
Imageless, robotic-assisted total knee arthroplasty accurately predicts postoperative gaps before femoral resections. This allows surgeons to virtually plan femoral implant alignment and optimize gap balance throughout the range of motion. The accurate prediction of gaps throughout the arc of motion combined with precise, robotically assisted femoral resection produces accurate postoperative ligament balance consistently.
We have been working to develop a compact, accurate, safe, and easy-to-use surgical robot for minimally invasive total knee arthroplasty (TKA). The goal of our bone-mounted robot, named Praxiteles, is to precisely position a surgical bone-cutting guide in the appropriate planes surrounding the knee, so that the surgeon can perform the planar cuts manually using the guide. The robot architecture is comprised of 2 motorized degrees of freedom (DoF) whose axes of rotation are arranged in parallel, and are precisely aligned to the implant cutting planes with a 2 DoF adjustment mechanism. Two prototypes have been developed and tested on saw bones and cadavers--an initial one for open TKA surgery and a new version for MIS TKA, which mounts on the side of the knee. A novel bone-milling technique is also presented that uses passive guide and a side milling tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.