Motivation
Computing the uniqueness of k-mers for each position of a genome while allowing for up to e mismatches is computationally challenging. However, it is crucial for many biological applications such as the design of guide RNA for CRISPR experiments. More formally, the uniqueness or (k, e)-mappability can be described for every position as the reciprocal value of how often this k-mer occurs approximately in the genome, i.e. with up to e mismatches.
Results
We present a fast method GenMap to compute the (k, e)-mappability. We extend the mappability algorithm, such that it can also be computed across multiple genomes where a k-mer occurrence is only counted once per genome. This allows for the computation of marker sequences or finding candidates for probe design by identifying approximate k-mers that are unique to a genome or that are present in all genomes. GenMap supports different formats such as binary output, wig and bed files as well as csv files to export the location of all approximate k-mers for each genomic position.
Availability and implementation
GenMap can be installed via bioconda. Binaries and C++ source code are available on https://github.com/cpockrandt/genmap.
We anticipate that SeqAn will continue to be a valuable resource, especially since it started to actively support various hardware acceleration techniques in a systematic manner.
The ability to detect recombination in pathogen genomes is crucial to the accuracy of phylogenetic analysis and consequently to forecasting the spread of infectious diseases and to developing therapeutics and public health policies. However, in case of the SARS-CoV-2, the low divergence of near-identical genomes sequenced over a short period of time makes conventional analysis infeasible. Using a novel method, we identified 225 anomalous SARS-CoV-2 genomes of likely recombinant origins out of the first 87,695 genomes to be released, several of which have persisted in the population. Bolotie is specifically designed to perform a rapid search for inter-clade recombination events over extremely large datasets, facilitating analysis of novel isolates in seconds. In cases where raw sequencing data was available, we were able to rule out the possibility that these samples represented co-infections by analyzing the underlying sequence reads. The Bolotie software and other data from our study are available at https://github.com/salzberg-lab/bolotie.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.