Volcanic tuffs naturally show a strong heterogeneity in their petrography and petrophysical properties. The arrangement of the components in tuffs can create a very wide spectrum of porosities and fabrics, which in turn can lead to a highly differential weathering behavior. Considerable amounts of clay minerals and zeolites are common and can contribute to a high sensitivity to expansional processes and salt crystallization. Understanding the influence of the rock properties on material behavior and durability can help to make predictions on future material behavior and evaluate the suitability of the material for construction purposes. This study presents the petrographic and petrophysical data of 15 selected tuffs and 513 tuffs from the literature used as building stones. Regression analysis show if parameters are comparable and if key parameters can be identified. Key parameters can potentially be used for the estimation of the material behavior, without the use of expensive analytics or weathering simulations.
In this study, nine volcanic tuffs from Armenia, Germany and Mexico were treated with two commercially available consolidants on base of silicic acid ester, as well as different pretreatments with an anti-swelling agent and/or primer components. Prior to the treatment, the tuffs were analyzed regarding their petrography and mineralogy, with a greater focus on their clay mineral content. The effect of the consolidation was evaluated by comparative analyses of petrophysical properties and weathering behavior before and after the treatments. The main goals of this study were to identify a general suitability of different consolidating treatments for different types of tuff, evaluating tartaric acid as a primer component for tuff consolidation and to pursue the approach of finding a molecular answer for apparent tuff consolidation problematics, by testing a consolidation agent with smaller molecule sizes than current products on the market: tetramethoxysilane (TMOS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.