Background
Aerobic rice production (AP) may be a solution to the looming water crisis by utilising less water compared to traditional flooded culture. As such, development of genotypes with narrow root cone angle (RCA) is considered a key AP adaptation trait as it could lead to deeper rooting and ensure water uptake at depth. Quantitative trait loci (QTL) and genes associated with rooting angle have been identified in rice, but usually in conventional transplanted systems or in upland and drought conditions. This study aimed to identify QTL associated with RCA in AP systems using a recombinant inbred line population derived from IRAT109.
Results
Four experiments conducted in glasshouse and aerobic field conditions revealed significant genotypic variation existed for RCA in the population. Single and multiple QTL models identified the presence of eight QTL distributed in chromosomes 1, 2, 3, 4, and 11. Combined, these QTL explained 36.7–51.2% of the genotypic variance in RCA present in the population. Two QTL, qRCA1.1 and qRCA1.3, were novel and may be new targets for improvement of RCA. Genotypes with higher number of favourable QTL alleles tended to have narrower RCA. qRCA4 was shown to be a major and stable QTL explaining up to 24.3% of the genotypic variation, and the presence of the target allele resulted in as much as 8.6° narrower RCA. Several genes related to abiotic stress stimulus response were found in the qRCA4 region.
Conclusion
Stable and novel genomic regions associated with RCA have been identified. Genotypes which had combinations of these QTL, resulted in a narrower RCA phenotype. Allele mining, gene cloning, and physiological dissection should aid in understanding the molecular function and mechanisms underlying RCA and these QTL. Ultimately, our work provides an opportunity for breeding programs to develop genotypes with narrow RCA and deep roots for improved adaptation in an AP system for sustainable rice production.
Aerobic rice production (AP) provides potential solutions to the global water crisis by consuming less water than traditional permanent water culture. Narrow root cone angle (RCA), development of deeper rooting and associated genomic regions are key for AP adaptation. However, their usefulness depends on validation across genetic backgrounds and development of linked markers. Using three F2 populations derived from IRAT109, qRCA4 was shown to be effective in multiple backgrounds, explaining 9.3–17.3% of the genotypic variation and introgression of the favourable allele resulted in 11.7–15.1° narrower RCA. Novel kompetitive allele specific PCR (KASP) markers were developed targeting narrow RCA and revealed robust quality metrics. Candidate genes related with plant response to abiotic stress and root development were identified along with 178 potential donors across rice subpopulations. This study validated qRCA4′s effect in multiple genetic backgrounds further strengthening its value in rice improvement for AP adaptation. Furthermore, the development of novel KASP markers ensured the opportunity for its seamless introgression across pertinent breeding programs. This work provides the tools and opportunity to accelerate development of genotypes with narrow RCA through marker assisted selection in breeding programs targeting AP, which may ultimately contribute to more sustainable rice production where water availability is limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.