This study investigated the sensory and rheological properties of young cheeses in order to better understand perceived cheese texture. Mozzarella and Monterey Jacks were tested at 4, 10, 17, and 38 d of age; process cheese was tested at 4 d. Rheological methods were used to determine the linear and nonlinear viscoelastic and fracture properties. A trained sensory panel developed a descriptive language and reference scales to evaluate cheese texture. All methods differentiated the cheeses by variety. Principal component analysis of sensory texture revealed that three principal components explained 96.1% of the total variation in the cheeses. The perception of firmness decreased as the cheeses aged, whereas the perception of springiness increased. Principal component analysis of the rheological parameters (three principal components: 87.9% of the variance) showed that the cheeses' solid-like response (storage modulus and fracture modulus) decreased during aging, while phase angle, maximum compliance, and retardation time increased. Analysis of the instrumental and sensory parameters (three principal components: 82.1% of the variance) revealed groupings of parameters according to cheese rigidity, resiliency, and chewdown texture. Rheological properties were highly associated with rigidity and resiliency, but less so with chewdown texture.
Spray‐drying, which has been used for commercial production of functional ingredients from several fruits and vegetables, has not yet been studied for sweetpotato processing. Thus, the objective was to determine the effects of viscosity reduction of sweetpotato puree with alpha‐amylase, maltodextrin (MD) addition, and inlet air temperature on the physicochemical characteristics of spray‐dried sweetpotato powder. A face‐centered cube design was used to evaluate the effects of amylase level (0, 3.75, and 7.5 mL/kg puree), MD concentration (0%, 10%, and 20%), and inlet air temperature (150 °C, 190 °C, and 220 °C) on powder characteristics. Model‐fitting using response surface methodology was performed to examine the effects of independent variables on the moisture content, color, water absorption, solubility, particle size, bulk density, and glass transition temperature. The data were fit to a full second order polynomial equation. However, only the linear and quadratic terms proved to be significant for most dried powder attributes. MD significantly increased powder solubility, altered the hue value, and raised the glass transition temperature of the powder. Pretreatment with alpha‐amylase resulted in a lower glass transition temperature and a decrease in particle size. Overall, results show that good quality sweetpotato powders can be produced using this drying method, with potential applications in food and nutraceutical products.
In vivo studies of jaw-muscle behavior have been integral factors in the development of our current understanding of the primate masticatory apparatus. However, even though it has been shown that food textures and mechanical properties influence jaw-muscle activity during mastication, very little effort has been made to quantify the relationship between the elicited masticatory responses of the subject and the mechanical properties of the foods that are eaten. Recent work on human mastication highlights the importance of two mechanical properties-toughness and elastic modulus (i.e., stiffness)-for food breakdown during mastication. Here we provide data on the toughness and elastic modulus of the majority of foods used in experimental studies of the nonhuman primate masticatory apparatus. Food toughness ranges from approximately 56.97 Jm(-2) (apple pulp) to 4355.45 Jm(-2) (prune pit). The elastic modulus of the experimental foods ranges from 0.07 MPa for gummy bears to 346 MPa for popcorn kernels. These data can help researchers studying primate mastication select among several potential foods with broadly similar mechanical properties. Moreover, they provide a framework for understanding how jaw-muscle activity varies with food mechanical properties in these studies.
Reduced- and low-fat cheeses are desired based on composition but often fall short on overall quality. One of the major problems with fat reduction in cheese is the development of a firm texture that does not break down during mastication, unlike that observed in full-fat cheeses. The objective of this investigation was to determine how the amount of fat affects the structure of Cheddar cheese from initial formation (2 wk) through 24 wk of aging. Cheeses were made with target fat contents of 3 to 33% (wt/wt) and moisture to protein ratios of 1.5:1. This allowed for comparisons based on relative amounts of fat and protein gel phases. Cheese microstructure was determined by confocal scanning laser microscopy combined with quantitative image analysis. Rheological analysis was used to determine changes in mechanical properties. Increasing fat content caused an increase in size of fat globules and a higher percentage of nonspherical globules. However, no changes in fat globules were observed with aging. Cheese rigidity (storage modulus) increased with fat content at 10°C, but differences attributable to fat were not apparent at 25°C. This was attributable to the storage modulus of fat approaching that of the protein gel; therefore, the amount of fat or gel phase did not have an effect on the cheese storage modulus. The rigidity of cheese decreased with storage and, because changes in the fat phase were not detected, it appeared to be attributable to changes in the gel network. It appeared that the diminished textural quality in low-fat Cheddar cheese is attributed to changes in the breakdown pattern during chewing, as altered by fat disrupting the cheese network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.