Identification of the novel (E)-N 1 -((2-chloro-7-methoxyquinolin-3-yl)methylene)-3-(phenylthio) propanehydrazide scaffold 18 has led to the development of a new series of biologically active hydrazide compounds. The parent compound 18 and new quinoline derivatives 19-26 were prepared from the corresponding quinoline hydrazones and substituted carboxylic acids using EDC-mediated peptide coupling reactions. Further modification of the parent compound 18 was achieved by replacement of the quinoline moiety with other aromatic systems. All the newly synthesized compounds were evaluated for their anti-cancer activity against the SH-SY5Y and Kelly neuroblastoma cell lines, as well as the MDA-MB-231 and MCF-7 breast adenocarcinoma cell lines. Analogues 19 and 22 significantly reduced the cell viability of neuroblastoma cancer cells with micromolar potency and significant selectivity over normal cells. The quinoline hydrazide 22 also induced G 1 cell cycle arrest, as well as upregulation of the p27 kip1 cell cycle regulating protein.
Bacteria cooperatively regulate the expression of many phenotypes through a mechanism called quorum sensing (QS). Many Gram-negative bacteria use an N-acyl homoserine lactone (AHL)-mediated QS system to control biofilm formation and virulence factor production. In recent years, quorum sensing inhibitors (QSIs) have become attractive tools to overcome antimicrobial resistance exhibited by various pathogenic bacteria. In the present study, we report the design and synthesis of novel N-arylisatin-based glyoxamide derivatives via the ring-opening reaction of N-aryl isatins with cyclic and acylic amines, and amino acid esters. The QSI activity of the synthesized compounds was determined in the LasR-expressing Pseudomonas aeruginosa MH602 and LuxR-expressing Escherichia coli MT102 reporter strains. Compounds 31 and 32 exhibited the greatest QSI activity in P. aeruginosa MH602, with 48.7% and 42.7% reduction in QS activity at 250 μM, respectively, while compounds 31 and 34 showed 73.6% and 43.7% QSI activity in E. coli MT102. In addition, the ability of these compounds to inhibit the production of pyocyanin in P. aeruginosa (PA14) was also determined, with compound 28 showing 47% inhibition at 250 μM. Furthermore, computational docking studies were performed on the LasR receptor protein of P. aeruginosa, which showed that formation of a hydrogen bonding network played a major role in influencing the QS inhibitory activity. We envisage that these novel non-AHL glyoxamide derivatives could become a new tool for the study of QS and potentially for the treatment of bacterial infections.
Necroptosis is a regulated caspase-independent form of necrotic cell death that results in an inflammatory phenotype. This process contributes profoundly to the pathophysiology of numerous neurodegenerative, cardiovascular, infectious, malignant, and inflammatory diseases. Receptor-interacting protein kinase 1 (RIPK1), RIPK3, and the mixed lineage kinase domain-like protein (MLKL) pseudokinase have been identified as the key components of necroptosis signaling and are the most promising targets for therapeutic intervention. Here, we review recent developments in the field of small-molecule inhibitors of necroptosis signaling, provide guidelines for their use as chemical probes to study necroptosis, and assess the therapeutic challenges and opportunities of such inhibitors in the treatment of a range of clinical indications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.