Organized vibration of the vocal folds is critical to high quality voice production. When the vocal folds oscillate, the superficial tissue of the vocal fold is displaced in a wave-like fashion, creating the so called “mucosal wave”. Because the mucosal wave is dependent on vocal fold structure, physical alterations of that structure cause mucosal wave abnormalities. Visualization and quantification of mucosal wave properties have become useful parameters in diagnosing and managing vocal fold pathology. Mucosal wave measurement provides information about vocal fold characteristics that cannot be determined with other assessment techniques. Here, we discuss the benefits, disadvantages, and clinical applicability of the different mucosal wave measurement techniques, such as electroglottography (EGG), photoglottography (PGG), and ultrasound and visualization techniques that include videokymography (VKG), stroboscopy, and high-speed digital imaging (HSDI). The various techniques and their specific uses are reviewed with the intention of helping researchers and clinicians choose a method for a given situation and understand its limitations as well as its potential applications. Recent applications of these techniques for quantitative assessment demonstrate that additional research must be conducted to realize the full potential of these tools. Evaluations of existing research and recommendations for future research are given to promote both the quantitative study of the mucosal wave through accurate and standardized measurement of mucosal wave parameters and the development of reliable methods with which physicians can diagnose vocal disorders.
Objectives/Hypothesis Digital kymography (DKG) can provide objective, quantitative data about vocal fold vibration which may help distinguish normal from pathological vocal folds as well as nodules from polyps. Study Design Case-control study. Methods 87 subjects were separated into three groups: control, nodules, and unilateral polyps, and examined using a high-speed camera attached to an endoscope. Videos were analyzed using a custom MATLAB program, and three DKG line-scan positions (25%, 50% and 75% of vocal fold length) were used in statistical analyses to compare vocal fold vibrational frequency, amplitude symmetry index (ASI), amplitude order, and vertical and lateral phase difference (VPD and LPD, respectively). Results Significant differences among groups were found in all vibrational parameters except frequency. Polyps and nodules groups exhibited greater ASI values (less amplitude symmetry) than the control group. While the control group consistently showed its largest amplitudes at the midline, the polyps group showed larger amplitudes toward the posterior end of the vocal folds. A significant anterior-posterior pattern in amplitude was not found in the nodules group. LPD values were usually largest (most symmetrical) in the control group, followed by nodules and polyps. LPD at the 25% position allowed for differentiation between polyp and nodule groups. The largest VPD (more pronounced mucosal wave) values were usually found in the control group. Conclusion Vibratory characteristics of normal and pathological vocal folds were quantitatively examined and compared using multi-line DKG. These findings may allow for better characterization of pathologies and eventually assist in improving the clinical utility of DKG.
Purpose In order for spatiotemporal analysis to become a relevant clinical tool, it must be applied to human vocal fold vibration. Receiver operating characteristic (ROC) analysis will help assess the ability of spatiotemporal parameters to detect pathological vibration. Materials and Methods Spatiotemporal parameters of correlation length and entropy were extracted from high speed videos of 124 subjects, 67 without vocal fold pathology and 57 with either vocal fold polyps or nodules. Mann-Whitney rank sum tests were performed to compare normal vocal fold vibrations to pathological vibrations, and ROC analysis was used to assess the diagnostic value of spatiotemporal analysis. Results A statistically significant difference was found between the normal and pathological groups in both correlation length (P < 0.001) and entropy (P < 0.001). ROC analysis showed area under the curve (AUC) of 0.85 for correlation length, 0.87 for entropy, and 0.92 when the two parameters were combined. A statistically significant difference was not found between the nodules and polyps groups in either correlation length (P = 0.227) or entropy (P = 0.943). ROC analysis showed AUC of 0.63 for correlation length and 0.51 for entropy. Conclusions Although they could not effectively distinguish vibration of vocal folds with nodules from those with polyps, the spatiotemporal parameters correlation length and entropy exhibit the ability to differentiate normal and pathological vocal fold vibration, and may represent a diagnostic tool for objectively detecting abnormal vibration in the future, especially in neurological voice disorders and vocal folds without a visible lesion.
Purpose Digital kymography and vocal fold curve fitting are blended with detailed symmetry analysis of kymograms to provide a comprehensive characterization of the vibratory properties of injured vocal folds. Method Vocal fold vibration of twelve excised canine larynges was recorded under uninjured, unilaterally injured, and bilaterally injured conditions. Kymograms were created at 25%, 50%, and 75% of the vocal fold length, and vibratory parameters were compared quantitatively among conditions and studied with respect to right-left and anterior-posterior symmetries. Results Anterior-posterior amplitude asymmetry was found in the bilateral condition. The unilateral condition showed significant right-left amplitude asymmetry, and it showed the lowest right-left phase symmetry among the conditions. In condition comparisons, vertical phase difference did not show significant differences among conditions, while amplitudes were significantly different among conditions at all line scan positions and most vocal fold lips. Significant differences in frequency were found among the conditions at all four vocal fold lips, with the bilateral condition exhibiting the greatest frequency. Conclusion Digital kymography and curve fitting provide detailed information about the vibratory behavior of injured vocal folds. Awareness of vibratory properties associated with vocal fold injury may aid in diagnosis, and the quantitative abilities of digital kymography may allow for objective treatment selection.
Imaging with DKG demonstrated an ability to assign a signal type to various laryngeal vibrations. Signal typing techniques utilizing direct observation of the vocal folds could be useful in determining valid methods for the analysis of vocal fold vibrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.