In recent years, our understanding of biological nitrogen fixation has been bolstered by a diverse array of scientific techniques. Still, the origin and extant distribution of nitrogen fixation has been perplexing from a phylogenetic perspective, largely because of factors that confound molecular phylogeny such as sequence divergence, paralogy, and horizontal gene transfer. Here, we make use of 110 publicly available complete genome sequences to understand how the core components of nitrogenase, including NifH, NifD, NifK, NifE, and NifN proteins, have evolved. These genes are universal in nitrogen fixing organisms-typically found within highly conserved operons-and, overall, have remarkably congruent phylogenetic histories. Additional clues to the early origins of this system are available from two distinct clades of nitrogenase paralogs: a group composed of genes essential to photosynthetic pigment biosynthesis and a group of uncharacterized genes present in methanogens and in some photosynthetic bacteria. We explore the complex genetic history of the nitrogenase family, which is replete with gene duplication, recruitment, fusion, and horizontal gene transfer and discuss these events in light of the hypothesized presence of nitrogenase in the last common ancestor of modern organisms, as well as the additional possibility that nitrogen fixation might have evolved later, perhaps in methanogenic archaea, and was subsequently transferred into the bacterial domain.
Thioredoxin reduction in chloroplasts is catalyzed by a unique class of disulfide reductases which use a [2Fe-2S]2+/+ ferredoxin as the electron donor and contain an Fe-S cluster as the sole prosthetic group in addition to the active-site disulfide. The nature, properties, and function of the Fe-S cluster in spinach ferredoxin:thioredoxin reductase (FTR) have been investigated by the combination of UV/visible absorption, variable-temperature magnetic circular dichroism (MCD), EPR, and resonance Raman (RR) spectroscopies. The results indicate the presence of an S = 0 [4Fe-4S]2+ cluster with complete cysteinyl-S coordination that cannot be reduced at potentials down to -650 mV, but can be oxidized by ferricyanide to an S = 1/2 [4Fe-4S]3+ state (g = 2.09, 2.04, 2.02). The midpoint potential for the [4Fe-4S]3+/2+ couple is estimated to be +420 mV (versus NHE). These results argue against a role for the cluster in mediating electron transport from ferredoxin (Em = -420 mV) to the active-site disulfide (Em = -230 mV, n = 2). An alternative role for the cluster in stabilizing the one-electron-reduced intermediate is suggested by parallel spectroscopic studies of a modified form of the enzyme in which one of the cysteines of the active-site dithiol has been alkylated with N-ethylmaleimide (NEM). NEM-modified FTR is paramagnetic as prepared and exhibits a slow relaxing, S = 1/2 EPR signal, g = 2.11, 2.00, 1.98, that is observable without significant broadening up to 150 K. While the relaxation properties are characteristic of a radical species, MCD, RR, and absorption studies indicate at least partial cluster oxidation to the [4Fe-4S]3+ state. Dye-mediated EPR redox titrations indicate a midpoint potential of -210 mV for the one-electron reduction to a diamagnetic state. By analogy with the properties of the ferricyanide-oxidized [4Fe-4S] cluster in Azotobacter vinelandii 7Fe ferredoxin [Hu, Z., Jollie, D., Burgess, B. K., Stephens, P. J., & Münck, E. (1994) Biochemistry 33, 14475-14485], the spectroscopic and redox properties of NEM-modified FTR are interpreted in terms of a [4Fe-4S]2+ cluster covalently attached through a cluster sulfide to a cysteine-based thiyl radical formed on one of the active-site thiols. A mechanistic scheme for FTR is proposed with similarities to that established for the well-characterized NAD(P)H-dependent flavin-containing disulfide oxidoreductases, but involving sequential one-electron redox processes with the role of the [4Fe-4S]2+ cluster being to stabilize the thiyl radical formed by the initial one-electron reduction of the active-site disulfide. The results indicate a new biological role for Fe-S clusters involving both the stabilization of a thiyl radical intermediate and cluster site-specific chemistry involving a bridging sulfide.
Thioredoxin reduction in plant chloroplasts is catalyzed by a unique class of disulfide reductases which use a one-electron donor, [Fe 2 S 2 ] 2+,+ ferredoxin, and has an active site involving a disulfide in close proximity to a [Fe 4 S 4 ] 2+ cluster. In this study, spinach ferredoxin:thioredoxin reductase (FTR) reduced with stoichiometric amounts of reduced benzyl viologen or frozen under turnover conditions in the presence of thioredoxin is shown to exhibit a slowly relaxing S ) 1/2 resonance (g ) 2.11, 2.00, 1.98) identical to that of a modified form of the enzyme in which one of the cysteines of the active-site disulfide is alkylated with N-ethylmaleimide (NEM-FTR). Hence, in accord with the previous proposal [Staples,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.