The purpose of the present study was to evaluate the diagnostic performance of a commercial serum antibody enzyme-linked immunosorbent assay (ELISA) modified to detect anti– Porcine reproductive and respiratory syndrome virus (PRRSV) antibodies in pen-based oral fluid specimens. Experimental and field oral fluid samples of defined status in reference to exposure of swine with PRRSV were used to derive the kinetics of detectable concentrations of antibody against PRRSV. Immunoglobulin (Ig)M and IgA were readily detected in oral fluid specimens from populations in which PRRSV infection was synchronized among all individuals but not in samples collected in commecial herds. In contrast, IgG was readily detected at diagnostically useful levels in both experimental and field samples for up to 126 days. Estimates of the IgG oral fluid ELISA performance were based on results from testing positive oral fluid samples ( n = 492) from experimentally inoculated pigs ( n = 251) and field samples ( n = 241) and negative oral fluid samples ( n = 367) from experimentally inoculated pigs ( n = 84) and field samples ( n = 283). Receiver operating characteristic analysis estimated the diagnostic sensitivity and specificity of the assay as 94.7% (95% confidence interval [CI]: 92.4, 96.5) and 100% (95% CI: 99.0, 100.0), respectively, at a sample-to-positive ratio cutoff of ≥0.40. The results of the study suggest that the IgG oral fluid ELISA can provide efficient, cost-effective PRRSV monitoring in commercial herds and PRRSV surveillance in elimination programs.
A 300-sow farrow-to-finish swine operation in the United States experienced a sudden and severe increase in mortality in neonatal piglets with high morbidity followed by vesicular lesions on the snout and feet of adult females and males. Affected live piglets were submitted for diagnostic investigation. Samples tested polymerase chain reaction (PCR) negative for foot-and-mouth disease virus, porcine delta coronavirus, porcine epidemic diarrhoea virus, porcine rotavirus types A, B and C, transmissible gastroenteritis virus, and porcine reproductive and respiratory syndrome virus. Senecavirus A (SV-A) formerly known as Seneca Valley virus was detected by real-time reverse-transcription polymerase chain reaction (rRT-PCR) from serum, skin and faeces of piglets and from serum and faeces of sows. SV-A was isolated in cell culture from piglet samples. SV-A VP1 gene region sequencing from piglet tissues was also successful. A biosecurity and disease entry evaluation was conducted and identified potential biosecurity risks factors for the entry of new pathogens into the operation. This is the first case report in the United States associating SV-A with a clinical course of severe but transient neonatal morbidity and mortality followed by vesicular lesions in breeding stock animals. Veterinarians and animal caretakers must remain vigilant for vesicular foreign animal diseases and report suspicious clinical signs and lesions to state animal health authorities for diagnostic testing and further investigation.
Senecavirus A has been infrequently associated with vesicular disease in swine since 1988. However, clinical disease has not been reproduced after experimental infection with this virus. We report vesicular disease in 9-week-old pigs after Sencavirus A infection by the intranasal route under experimental conditions.
bWe performed a longitudinal field study in a swine breeding herd that presented with an outbreak of vesicular disease (VD) that was associated with an increase in neonatal mortality. Initially, a USDA Foreign Animal Disease (FAD) investigation confirmed the presence of Senecavirus A (SVA) and ruled out the presence of exotic agents that produce vesicular lesions, e.g., foot-andmouth disease virus and others. Subsequently, serum samples, tonsil swabs, and feces were collected from sows (n ؍ 22) and their piglets (n ؍ 33) beginning 1 week after the onset of the clinical outbreak and weekly for 6 weeks. The presence of SVA RNA was evaluated in all specimens collected by reverse transcriptase quantitative PCR (RT-qPCR) targeting a conserved region of the 5= untranslated region (5=-UTR). The serological response (IgG) to SVA was evaluated by the weekly testing of sow and piglet serum samples on a SVA VP1 recombinant protein (rVP1) indirect enzyme-linked immunosorbent assay (ELISA). The rVP1 ELISA detected seroconversion against SVA in clinically affected and non-clinically affected sows at early stages of the outbreak as well as maternal SVA antibodies in offspring. Overall, the absence of vesicles (gross lesions) in SVA-infected animals and the variability of RT-qPCR results among specimen type demonstrated that a diagnostic algorithm based on the combination of clinical observations, RT-qPCR in multiple diagnostic specimens, and serology are essential to ensure an accurate diagnosis of SVA. S enecavirus A (SVA), formerly Seneca Valley virus (SVV), is a nonenveloped, single-stranded, positive-sense RNA virus that belongs to the genus Senecavirus in the family Picornaviridae (1). The virus was first described as a contaminant of a PER C6 cell line (2). The virus encodes one polyprotein that is posttranslationally processed by virus-encoded proteases into 4 structural (VP1 to VP4) and 7 nonstructural (2A to 2C and 3A to 3D) proteins (2, 3). The pathogenic role of these SVA proteins is unknown, but VP1 is considered to be the most immunogenic protein in viruses of the Picornaviridae family (4, 5).Idiopathic vesicular disease (IVD), a sporadic and transient condition affecting swine, has been reported in pigs in Australia, New Zealand, and the United States (6-8). It was not until 2007 that the presence of SVA was linked with IVD outbreaks in Canada (9). Most recently, SVA was detected in sporadic and transient outbreaks of IVD in the United States, Brazil, and China (10-13). Lesions observed in cases of IVD associated with SVA infection are characterized by vesicle formations and epidermal erosions that progress to ulcers of the coronary band, oral cavity, and nasal planum. Affected animals present transient fever and lameness. Vesicular lesions in pigs resemble those in other foreign vesicular diseases, such as foot-and-mouth disease (FMD), vesicular stomatitis (VS), swine vesicular disease (SVD), and vesicular exanthema of swine (VES). In addition, numerous reports associate the presence of SVA with increased ne...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.