Camptothecin and its derivatives, topotecan and irinotecan are specific topoisomerase I (Top1) inhibitors and potent anticancer drugs killing cancer cells by producing replication-associated DNA double-strand breaks, and the indenoisoquinoline LMP-400 (indotecan) is a novel Top1 inhibitor in clinical trial. To develop novel drug combinations, we conducted a synthetic lethal siRNA screen using a library that targets nearly 7,000 human genes. Depletion of ATR, the main transducer of replication stress came as a top candidate gene for camptothecin synthetic lethality. Validation studies using ATR siRNA and the ATR inhibitor VE-821, confirmed marked antiproliferative synergy with camptothecin, and even greater synergy with LMP-400. Single cell analyses and DNA fiber combing assays showed that VE-821 abrogates the S-phase replication elongation checkpoint and the replication origin-firing check point induced by camptothecin and LMP-400. As expected, the combination ofTop1 inhibitors with VE-821 inhibited the phosphorylation of ATR and Chk1; however, it strongly induced γH2AX. In cells treated with the combination, the γH2AX pattern changed overtime from the well-defined Top1-induced damage foci to an intense peripheral and diffuse nuclear staining, which could be used as response biomarker. Finally, the clinical derivative of VE-821, VX-970 enhanced the in vivo tumor response to irinotecan without additional toxicity. Akey implication of our work is the mechanistic rationale and proof-of-principle it provides to evaluate the combination of Top1 inhibitors with ATR inhibitors in clinical trials.
2020) Preclinical evaluation of an affinity-enhanced MAGE-A4-specific T-cell receptor for adoptive T-cell therapy, OncoImmunology, 9:1, 1682381, ABSTRACT A substantial obstacle to the success of adoptive T cell-based cancer immunotherapy is the sub-optimal affinity of T-cell receptors (TCRs) for most tumor antigens. Genetically engineered TCRs that have enhanced affinity for specific tumor peptide-MHC complexes may overcome this barrier. However, this enhancement risks increasing weak TCR cross-reactivity to other antigens expressed by normal tissues, potentially leading to clinical toxicities. To reduce the risk of such adverse clinical outcomes, we have developed an extensive preclinical testing strategy, involving potency testing using 2D and 3D human cell cultures and primary tumor material, and safety testing using human primary cell and cell-line crossreactivity screening and molecular analysis to predict peptides recognized by the affinity-enhanced TCR. Here, we describe this strategy using a developmental T-cell therapy, ADP-A2M4, which recognizes the HLA-A2-restricted MAGE-A4 peptide GVYDGREHTV. ADP-A2M4 demonstrated potent anti-tumor activity in the absence of major off-target cross-reactivity against a range of human primary cells and cell lines. Identification and characterization of peptides recognized by the affinity-enhanced TCR also revealed no cross-reactivity. These studies demonstrated that this TCR is highly potent and without major safety concerns, and as a result, this TCR is now being investigated in two clinical trials (NCT03132922, NCT04044768). ARTICLE HISTORY
Platelets tether to collagen in both a von Willebrand factor (vWF)-dependent and a vWF-independent manner. We have recently characterized a recombinant protein, saratin, isolated from the saliva of the leech Hirudo medicinalis, expressed it in Hansenula polymorpha, and studied its effect on direct and indirect platelet-collagen interactions. Saratin dose dependently inhibited the binding of purified human vWF to human type I and III collagens (IC(50)= 0.23 +/- 0.004 and 0.81 +/- 0.04 microg mL(-1), respectively) and to calf skin collagen (IC(50)= 0.44 +/- 0.008 microg mL(-1)). Furthermore, saratin showed a similar inhibitory potency against the binding of human, rodent, and porcine plasma vWF to these collagens. In a flow chamber under conditions of elevated shear (2700 s(-1)), saratin dose dependently and potently inhibited platelet aggregate formation on a collagen-coated surface (IC(50)= 0.96 +/- 0.25 microg mL(-1)), but at reduced shear (1300 s(-1)) a rightward shift in the dose-response curve was noted (IC(50)= 5.2 +/- 1.4 microg mL(-1)). Surface plasmon resonance analysis revealed both high and low affinity binding sites for saratin on human collagen type III (K(d) 5 x 10(-8) M and 2 x 10(-6) M, respectively). Although low concentrations of saratin, which inhibited platelet adhesion under increased shear (i.e., saturation of high-affinity binding sites), had no effect on vWF-independent collagen-induced platelet aggregation, high concentrations (i.e., saturation of low-affinity binding sites) were found to inhibit platelet aggregation. These data demonstrate that saratin is a potent inhibitor of vWF-dependent platelet adhesion to collagen and hence may have therapeutic potential as an antithrombotic agent.
Saratin significantly decreased platelet adhesion, intimal hyperplasia, luminal stenosis, and thrombosis after carotid endarterectomy in rats. Saratin did not increase suture line bleeding or bleeding times, and did not decrease platelet counts. Saratin may serve as a topical agent to be used for the site-specific inhibition of thrombosis and intimal hyperplasia after vascular manipulation.
1 The aim of the present studies was to examine the effects of nitric oxide donors on arrhythmias induced by coronary artery occlusion and reperfusion, and on cardiac cyclic nucleotides. Experiments were performed in pentobarbitone-anaesthetized rats prepared for occlusion of the left coronary artery.2 Sodium nitroprusside (0.1, 0.3 and I jg kg-' minm) had no significant effects on the incidence of ventricular tachycardia, total ventricular fibrillation or the mortality resulting from 25 min of acute myocardial ischaemia when compared with values in controls. In addition, there was no alteration in the number of ventricular premature beats that occurred in survivors. 3 3-Morpholinosydnonimine-N-ethylcarbamide (SIN-1, 10, 20 and 40 jig kg-' min-') caused marked hypotension but did not alter the incidence or severity of ischaemia-induced arrhythmias. In rats subject to abrupt reperfusion after 5 min of myocardial ischaemia, lower doses of 3 and O jig kg-min-') still caused significant reductions in systolic and diastolic blood pressure but were devoid of antiarrhythmic activity. 4 In separate experiments in sham-operated rats, sodium nitroprusside (1lag kg-' min-'), isosorbide dinitrate (30 and 60 tg kg' min-') and SIN-1 (20 and 40 fg kg' min') had no significant effects on cardiac cyclic GMP content. 5These results indicate that nitric oxide donors do not alter arrhythmias induced by acute coronary artery occlusion or reperfusion in anaesthetized rats. Although increases in total cardiac cyclic GMP could not be detected, the results suggest that, at least in the rat, cyclic GMP does not influence these arrhythmias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.