This work presents the first alkyl monolayers covalently bound on HF-treated silicon carbide surfaces (SiC) through thermal reaction with 1-alkenes. Treatment of SiC with diluted aqueous HF solutions removes the native oxide layer (SiO2) and provides a reactive hydroxyl-covered surface. Very hydrophobic methyl-terminated surfaces (water contact angle theta = 107 degrees ) are obtained on flat SiC, whereas attachment of omega-functionalized 1-alkenes also yields well-defined functionalized surfaces. Infrared reflection absorption spectroscopy, ellipsometry, and X-ray photoelectron spectroscopy measurements are used to characterize the monolayers and show their covalent attachment. The resulting surfaces are shown to be extremely stable under harsh acidic conditions (e.g., no change in theta after 4 h in 2 M HCl at 90 degrees C), while their stability in alkaline conditions (pH = 11, 60 degrees C) also supersedes that of analogous monolayers such as those on Au, Si, and SiO2. These results are very promising for applications involving functionalized silicon carbide.
Advances in siliconcarbide microfabrication and growth process optimization for siliconcarbide nanostructures are ushering in new opportunities for microdevices capable of operation in a variety of demanding applications, involving high temperature, radiation, or corrosive environment. This review focuses on the materials science and processing technologies for siliconcarbidethin films and low dimensional structures, and details recent progress in manufacturing technology, including deposition, metallization, and fabrication of semiconductor microdevices, with emphasis on sensor technology. The challenges remaining in developing siliconcarbide as a mainstay materials platform are discussed throughout.
Ordered periodic microlattices with densities from 0.5 mg/cm3 to 500 mg/cm3 are fabricated by depositing various thin film materials (Au, Cu, Ni, SiO2, poly(C8H4F4)) onto sacrificial polymer lattice templates. Young's modulus and strength are measured in compression and the density scaling is determined. At low relative densities, recovery from compressive strains of 50% and higher is observed, independent of lattice material. An analytical model is shown to accurately predict the transition between recoverable “pseudo-superelastic” and irrecoverable plastic deformation for all constituent materials. These materials are of interest for energy storage applications, deployable structures, and for acoustic, shock, and vibration damping
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.