A series of trivalent lanthanide hydroxysulfates, Ln(OH)SO(4), (Ln = Pr through Yb, except radioactive Pm) has been synthesized via hydrothermal methods from Ln(2)(SO(4))(3)·8H(2)O by reaction with aqueous NaOH at 170 °C in Teflon lined Parr steel autoclaves, and were characterized by single crystal X-ray diffraction and FT-IR spectroscopy. Two types of arrangements were found in the solid state. The lighter (Ln = Pr-Nd, Sm-Gd) and heavier lanthanide(III) hydroxysulfates (Tb-Yb) are each isostructural. Both structure types exhibit the monoclinic space group P2(1)/n, but the unit cell content is doubled with two crystallographically distinct LnO(8) polyhedra for the heavier lanthanide compounds. The lighter complexes maintain the coordination number 9, forming a three-dimensional extended lattice. The heavier counterparts exhibit the coordination number 8, and arrange as infinite columns of two crystallographically different LnO(8) polyhedra, while extending along the "c" axis. These columns of LnO(8) polyhedra are surrounded and separated by six columns of sulfate ions, also elongating in the "c" direction. The rigid sulfate entities seem to obstruct the closing in of the lighter LnO(9) polyhedra, and show an inclining degree of torsion into the "ac" layers. The crystal lattice of the lighter 4f complexes can sufficiently withstand the tension buildup, caused by the decreasing Ln(3+) radius, up to Gd(OH)SO(4). The energy profile of this structural arrangement then seems to exceed levels at which this structure type is favorable. The lattice arrangement of the heavier Ln-analogues seems to offer a lower energy profile. This appears to be the preferred arrangement for the heavier lanthanide hydroxysulfates, whose crystal lattice exhibits more flexibility, as the coordination sphere of these analogues is less crowded. The IR absorbance frequencies of the hydroxide ligands correlate as a function of the Ln(3+) ionic radius. This corresponds well with the X-ray single crystal analysis data.
Dinuclear metallodrugs offer much potential in the development of novel anticancer chemotherapeutics as a result of the distinct interactions possible with bio‐macromolecular targets and the unique biological activity that can result. Herein, we describe the development of isostructural homo‐dinuclear OsII–OsII and hetero‐dinuclear OsII–RuII organometallic complexes formed from linking the arene ligands of [M(η6‐arene)(C2O4)(PTA)] units (M=Os/Ru; PTA=1,3,5‐triaza‐7‐phosphaadamantane). Using these complexes together with the known RuII–RuII analogue, a chromatin‐modifying agent, we probed the impact of varying the metal ions on the structure, reactivity and biological activity of these complexes. The complexes were structurally characterised by X‐ray diffraction experiments, their stability and reactivity were examined by using 1H and 31P NMR spectroscopy, and their biological activity was assessed, alongside that of mononuclear analogues, through MTT assays and cell‐cycle analysis (HT‐29 cell line). The results revealed high antiproliferative activity in each case, with cell‐cycle profiles of the dinuclear complexes found to be similar to that for untreated cells, and similar but distinct profiles for the mononuclear complexes. These results indicate these complexes impact on cell viability predominantly through a non‐DNA‐damaging mechanism of action. The new OsII–OsII and OsII–RuII complexes reported here are further examples of a family of compounds operating via mechanisms of action atypical of the majority of metallodrugs, and which have potential as tools in chromatin research.
No abstract
Modern architecture, a reaction to the industrialization of the 19th-century, is characterized by a lack of applied decoration, exposed structural members, materials kept in their natural state and “flat” roofs. It developed in Europe in the 1920s and 1930s, particularly in Germany, the Netherlands and France, and spread to the rest of the world after World War II. Depending on your point of view, Modern architecture can either be exciting and exhilarating or inhuman and oppressive. This article surveys these two opposite representations of Modern architecture in the cinema, beginning from its first appearance in the 1920s until today. Films directed by Marcel L’Herbier (The Inhuman Woman, 1924), Alfred Hitchcock (North by Northwest, 1959), Jacques Tati (Mon Oncle, 1958, and Playtime, 1967), Jean-Luc Godard (Contempt, 1963, Alphaville, 1965, and Two or Three Things I Know About Her, 1967), as well as several from the James Bond series (Dr. No [Terence Young, 1962], Goldfinger [Guy Hamilton, 1964], and Diamonds are Forever [Guy Hamilton, 1971]) are highlighted. Culminating in a survey of like-minded films since the 1980s, the article concludes that Modern architecture in the cinema is here to stay and will continue to play an integral role in the making of films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.