This PhD thesis addresses how fault and fold growth affect accommodation development and sediment routing and fill in extensional basins. Extensional basins are key constituents of passive continental passive and intra-continental rift systems and hold great potential accumulation of reservoir-grade successions of sediments. These types of basins differ widely in terms of e.g. fault and fold properties, duration of faulting, accommodation development, tectono-climatic setting and lithology of basin substrate and fill. Accordingly, constructing general models for extensional basin evolution is challenging. Combining different types of datasets that offer different observation scale and resolution can mitigate this. This thesis presents seismic case studies from the Fingerdjupet Subbasin, southwestern Barents Sea and outcrop studies from the Bandar Jissah Basin, northeastern Oman. Seismic analyses include interpretations of faults and horizons bounding seismic reflector packages; age control was achieved
A comprehensive dataset is collated in a study on sediment transport, timing and basin physiography during the Early Cretaceous Period in the Boreal Basin (Barents Sea), one of the world’s largest and longest active epicontinental basins. Long-wavelength tectonic tilt related to the Early Cretaceous High Arctic Large Igneous Province (HALIP) set up a fluvial system that developed from a sediment source area in the NW, which flowed SE across the Svalbard archipelago, terminating in a low-accommodation shallow sea within the Bjarmeland Platform area of the present-day Barents Sea. The basin deepened to the SE with a ramp-like basin floor with gentle dip. Seismic data show sedimentary lobes with internal clinoform geometry that advanced from the NW. These lobes interfingered with, and were overlain by, another younger depositional system with similar lobes sourced from the NE. The integrated data allow mapping of architectural patterns that provide information on basin physiography and control factors on source-to-sink transport and depositional patterns within the giant epicontinental basin. The results highlight how low-gradient, low-accommodation sediment transport and deposition has taken place along proximal to distal profiles for several hundred kilometres, in response to subtle changes in base level and by intra-basinal highs and troughs. Long-distance correlation along depositional dip is therefore possible, but should be treated with caution to avoid misidentification of timelines for diachronous surfaces.
Extensional faults and folds exert a fundamental control on the location, thickness and partitioning of sedimentary deposits on rift basins. The connection between the mode of extensional fault reactivation, resulting fault shape and extensional fold growth is well‐established. The impact of folding on accommodation evolution and growth package architecture, however, has received little attention; particularly the role‐played by fault‐perpendicular (transverse) folding. We study a multiphase rift basin with km‐scale fault displacements using a large high‐quality 3D seismic data set from the Fingerdjupet Subbasin in the southwestern Barents Sea. We link growth package architecture to timing and mode of fault reactivation. Dip linkage of deep and shallow fault segments resulted in ramp‐flat‐ramp fault geometry, above which fault‐parallel fault‐bend folds developed. The folds limited the accommodation near their causal faults, leading to deposition within a fault‐bend synclinal growth basin further into the hangingwall. Continued fold growth led to truncation of strata near the crest of the fault‐bend anticline before shortcut faulting bypassed the ramp‐flat‐ramp structure and ended folding. Accommodation along the fault‐parallel axis is controlled by the transverse folds, the location and size of which depends on the degree of linkage in the fault network and the accumulated displacement on causal faults. We construct transverse fold trajectories by tracing transverse fold hinges through space and time to highlight the positions of maximum and minimum accommodation and potential sediment entry points to hangingwall growth basins. The length and shape of the constructed trajectories relate to the displacement on their parent faults, duration of fault activity, timing of transverse basin infill, fault linkage and strain localization. We emphasize that the considerable wavelength, amplitudes and potential periclinal geometry of extensional folds make them viable targets for CO2 storage or hydrocarbon exploration in rift basins.
A transition from supradetachment to rift basin signature is recorded in the ~1,500 m thick succession of continental to shallow marine conglomerates, mixed carbonate‐siliciclastic shallow marine sediments and carbonate ramp deposits preserved in the Bandar Jissah Basin, located southeast of Muscat in the Sultanate of Oman. During deposition, isostatically‐driven uplift rotated the underlying Banurama Detachment and basin fill ~45° before both were cut by the steep Wadi Kabir Fault as the basin progressed to a rift‐style bathymetry that controlled sedimentary facies belts and growth packages. The upper Paleocene to lower Eocene Jafnayn Formation was deposited in a supradetachment basin controlled by the Banurama Detachment. Alluvial fan conglomerates sourced from the Semail Ophiolite and the Saih Hatat window overlie the ophiolitic substrate and display sedimentary transport directions parallel to tectonic transport in the Banurama Detachment. The continental strata grade into braidplain, mouth bar, shoreface and carbonate ramp deposits. Subsequent detachment‐related folding of the basin during deposition of the Eocene Rusayl and lower Seeb formations marks the early transition towards a rift‐style basin setting. The folding, which caused drainage diversion and is affiliated with sedimentary growth packages, coincided with uplift‐isostasy as the Banurama Detachment was abandoned and the steeper Marina, Yiti Beach and Wadi Kabir faults were activated. The upper Seeb Formation records the late transition to rift‐style basin phase, with fault‐controlled sedimentary growth packages and facies distributions. A predominance of carbonates over siliciclastic sediments resulted from increasing near‐fault accommodation, complemented by reduced sedimentary input from upland catchments. Hence, facies distributions in the Bandar Jissah Basin reflect the progression from detachment to rift‐style tectonics, adding to the understanding of post‐orogenic extensional basin systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.