Green eco-friendly housing includes approaches to reduce indoor air pollutant sources and to increase energy efficiency. Although sealing/tightening buildings can save energy and reduce the penetration of outdoor pollutants, an adverse outcome can be increased buildup of pollutants with indoor sources. The objective of this study was to determine the differences in the indoor air quality (IAQ) between green and non-green homes in low-income housing complexes. In one housing complex, apartments were renovated using green principles (n=28). Home visits were conducted immediately after the renovation, and subsequently at 6 months and at 12 months following the renovation. Of these homes, eight homes had pre-renovation home visits; this allowed pre- and post-renovation comparisons within the same homes. Parallel visits were conducted in non-green (control) apartments (n=14) in a nearby low-income housing complex. The IAQ assessments included PM2.5, black carbon, ultrafine particles, sulfur, total volatile organic compounds (VOCs), formaldehyde, and air exchange rate. Data were analyzed using linear mixed-effects models. None of the indoor pollutant concentrations were significantly different between green and non-green homes. However, we found differences when comparing the concentrations before and after renovation. Measured immediately after renovation, indoor black carbon concentrations were significantly lower averaging 682 ng/m3 in post-renovation vs. 2,364 ng/m3 in pre-renovation home visits (p=0.01). In contrast, formaldehyde concentrations were significantly higher in post-renovated (0.03 ppm) than in pre-renovated homes (0.01 ppm) (p=0.004). Questionnaire data showed that opening of windows occurred less frequently in homes immediately post-renovation compared to pre-renovation; this factor likely affected the levels of indoor black carbon (from outdoor sources) and formaldehyde (from indoor sources) more than the renovation status itself. To reduce IAQ problems and potentially improve health, careful selection of indoor building materials and ensuring sufficient ventilation are important for green building designs.
The main study objective was to compare different methods for assessing mold exposure in conjunction with an epidemiologic study on the development of children's asthma. Homes of 184 children were assessed for mold by visual observations and dust sampling at child's age 1 (Year 1). Similar assessment supplemented with air sampling was conducted in Year 7. Samples were analyzed for endotoxin, (1-3)-β-D-glucan, and fungal spores. The Mold Specific Quantitative Polymerase Chain Reaction assay was used to analyze 36 mold species in dust samples, and the Environmental Relative Moldiness Index (ERMI) was calculated. Homes were categorized based on three criteria: 1) visible mold damage, 2) moldy odor, and 3) ERMI. Even for homes where families had not moved, Year 7 endotoxin and (1-3)-β-D-glucan exposures were significantly higher than those in Year 1 (p<0.001), whereas no difference was seen for ERMI (p=0.78). Microbial concentrations were not consistently associated with visible mold damage categories, but were consistently higher in homes with moldy odor and in homes that had high ERMI. Low correlations between results in air and dust samples indicate different types or durations of potential microbial exposures from dust vs. air. Future analysis will indicate which, if any, of the assessment methods is associated with the development of asthma.
Using quasigeostrophic arguments and numerical simulations, past works have developed conceptual models of vertical circulations induced by linear and curved jet streaks. Because jet-induced vertical motion could influence the development of severe weather, these conceptual models, especially the "four quadrant" model for linear jet streaks, are often applied by operational forecasters. The present study examines the climatology of tornado, hail, and severe wind reports relative to upper-level jet streaks, along with temporal trends in storm report frequencies and changes in report distributions for different jet streak directions. In addition, composite fields (e.g., divergence, vertical velocity) are analyzed for jet streak regions to examine whether the fields correspond to what is expected from conceptual models of curved or linear jet streaks, and whether the fields help explain the storm report distributions. During the period analyzed, 84% of storm reports were associated with upper-level jet streaks, with June-August having the lowest percentages. In March and April the left-exit quadrant had the most storm reports, while after April the right-entrance quadrant was associated with the most reports. Composites revealed that tornado and hail reports are concentrated in the jet-exit region along the major jet axis and in the rightentrance quadrant. Wind reports have similar maxima, but the right-entrance quadrant maximum is more pronounced. Upper-level composite divergence fields generally correspond to what would be expected from the four-quadrant model, but differences in the magnitudes of the vertical velocity between the quadrants and locations of divergent-convergent centers may have resulted from jet curvature. The maxima in the storm report distributions are not well collocated with the maxima in the upper-level divergence fields, but are much better collocated with low-level convergence maxima that exist in both exit regions and extend into the right-entrance region. Composites of divergence-convergence with linear, cyclonic, and anticyclonic jet streaks also generally matched conceptual models for curved jet streaks, and it was found that wind reports have a notable maximum in the right-entrance quadrant of both anticyclonic and linear jet streaks. Finally, it was found that the upper-level divergence and vertical velocity in all jet-quadrants have a tendency to decrease as jet streak directions shift from SSW to NNW. Keywordscomposite fields, conceptual model, divergence field, entrance region, four quadrant, jet axis, jet streaks, numerical simulation, operations forecasters, severe weather, temporal trends, vertical circulation, computer simulation, precipitation (meteorology), storms, tornadoes ABSTRACTUsing quasigeostrophic arguments and numerical simulations, past works have developed conceptual models of vertical circulations induced by linear and curved jet streaks. Because jet-induced vertical motion could influence the development of severe weather, these conceptual models, espec...
The present study was designed to characterize similarities and differences among three wounding modalities in partial-thickness porcine wounds. We hypothesized that inherent differences, such as endogenous cytokine delivery into excisional wounds or ablation of eschar during laser vaporization, should accelerate the magnitude and sequence of reparative events above the delayed repair that is frequently observed in patients with burns. A constant mid-dermal depth of injury was created by a Padgett dermatome, a computer-controlled pulsed CO(2) laser, or a temperature-controlled metal template. Wounds were harvested after 5, 10, or 15 days. After 5 days, significant resurfacing differences were apparent with values of 54% in excisions, 29% in lasers, and 12% in standard thermal burns. Sequences of fibroblastic proliferation were measurably different among the three wound modalities. At day 5 the bromodeoxyuridine labeling index for fibroblasts showed laser wound levels greater than excision wound levels, which were greater than burn wound levels; but by day 10, the proliferative profiles indicated that burn wound levels were greater than excision wound levels, which were greater than laser wound levels. Capillary areas (an assessment of angiogenesis) differed among the three wound types throughout the study. Peak values were observed at day 5 in both excisional and laser injuries; however, standard thermal burns did not peak until day 10. Both the magnitude and sequence of expression of three matrix metalloproteinases (-1, -2, and -9) differed among the three types of injuries. Laser wounds showed the earliest peak in matrix metalloproteinase-1 expression, whereas burns showed the least expression at day 5. In conclusion, although the three types of wounds undergo similar reparative processes such as reepithelialization, fibroblastic proliferation, angiogenesis, and expression of matrix metalloproteinases, the magnitude and temporal sequences are measurably altered among the three wound modalities. A greater understanding of specific differences within wound environments may lead to more insightful design of interventional wound therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.