A core aspect of advanced driver assistance systems (ADAS) is to support the driver with information about the current environmental situation of the vehicle. Bad weather conditions such as rain might occlude regions of the windshield or a camera lens and therefore affect the visual perception. Hence, the automated detection of raindrops has a significant importance for video-based ADAS. The detection of raindrops is highly time critical since video pre-processing stages are required to improve the image quality and to provide their results in real-time. This paper presents an approach for real-time raindrops detection which is based on cellular neural networks (CNN) and support vector machines (SVM). The major idea is to prove the possibility of transforming the support vectors into CNN templates. The advantage of CNN is its ultra fast precessing on embedded platforms such as FPGAs and GPUs. The proposed approach is capable to detect raindrops that might negatively affect the vision of the driver. Different classification features were extracted to evaluate and compare the performance between the proposed approach and other approaches.
In this paper we present a novel technique based on deep reinforcement learning that allows for numerical analytic continuation of integrals that are often encountered in one-loop diagrams in quantum field theory. In order to extract certain quantities of two-point functions, such as spectral densities, mass poles or multi-particle thresholds, it is necessary to perform an analytic continuation of the correlator in question. At one-loop level in Euclidean space, this results in the necessity to deform the integration contour of the loop integral in the complex plane of the square of the loop momentum, in order to avoid non-analyticities in the integration plane. Using a toy model for which an exact solution is known, we train a reinforcement learning agent to perform the required contour deformations. Our study shows great promise for an agent to be deployed in iterative numerical approaches used to compute non-perturbative 2-point functions, such as the quark propagator Dyson-Schwinger equation, or more generally, Fredholm equations of the second kind, in the complex domain.
This paper presents a real-time emotion recognition concept of voice streams. A comprehensive solution based on Bayesian Quadratic Discriminate Classifier(QDC) is developed. The developed system supports Advanced Driver Assistance Systems (ADAS) to detect the mood of the driver based on the fact that aggressive behavior on road leads to traffic accidents. We use only 12 features to classify between 5 different classes of emotions. We illustrate that the extracted emotion features are highly overlapped and how each emotion class is effecting the recognition ratio. Finally, we show that the Bayesian Quadratic Discriminate Classifier is an appropriate solution for emotion detection systems, where a real-time detection is deeply needed with a low number of features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.