The magnetic response of a ferromagnet after an ultrafast optical excitation can be connected to the underlying electronic dynamics either via primary excitation processes during the laser pulse or via secondary collision processes. In the latter case, the information on the details of the excitation is lost and, therefore, the electron dynamics can be described using quasi-equilibrium concepts. In this work, we study the effect of the pump photon energy on the ultrafast demagnetization dynamics in ferromagnetic nickel. We find that the magnetization dynamics for similar absorbed energies for a range of pump photon energies are almost identical and depend only on the absorbed energy. This is in stark contrast to characteristic differences in the optically excited electronic distributions, as calculated from the band structure. In addition, the measured fluence-dependent dynamics can be reproduced with a model based on local temperatures. These findings indicate that it is mainly secondary processes that are responsible for the observed demagnetization dynamics.
We study the influence of transport effects on time- and space-resolved magnetization dynamics in a laser-excited thick nickel film. We explicitly include diffusive heat transport and spin-resolved charge transport as well as Seebeck and Peltier effects and calculate the dynamics of spin-dependent electronic temperatures, chemical potentials, lattice temperatures, and magnetization. We find that transport has an influence on the magnetization dynamics closer to the excited surface as well as in regions deeper than the penetration depth of the laser. We reveal that, for higher absorbed fluences and in the presence of transport, thick magnetic films show a quenching time nearly independent of depth, though the magnitude of quenching is depth-dependent.
We demonstrate the tuneablity of the ultrafast energy flow in magnetic/non-magnetic bilayer structures by changing the wavelength of the optical excitation. This is achieved by an advanced description of the temperature based µT-model that explicitly considers the wavelength-and layerdependent absorption profile within multilayer structures. For the exemplary case of a Ni/Au bilayer, our simulations predict that the energy flow from Ni to Au is reversed when changing the wavelength of the excitation from the infrared to the ultraviolet spectral range. These predictions are fully supported by characteristic signatures in the magneto-optical Kerr traces of the Ni/Au model system. Our results will open up new avenues to steer and control the energy transport in designed magnetic multilayer for ultrafast spintronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.