Monitoring blood flow is critical to treatment efficacy in many surgical settings. Laser speckle contrast imaging (LSCI) is a simple, real-time, label-free optical technique for monitoring blood flow that has emerged as a promising technique but lacks the ability to make repeatable quantitative measurements. Multi-exposure speckle imaging (MESI) is an extension of LSCI that requires increased complexity of instrumentation, which has limited its adoption. In this paper, we design and fabricate a compact, fiber-coupled MESI illumination system (FCMESI) that is substantially smaller and less complex than previous systems. Using microfluidics flow phantoms, we demonstrate that the FCMESI system measures flow with an accuracy and repeatability equivalent to traditional free space MESI illumination systems. With an in vivo stroke model, we also demonstrate the ability of FCMESI to monitor cerebral blood flow changes.
Significance: Microfluidic flow phantom studies are commonly used for characterizing the performance of laser speckle contrast imaging (LSCI) instruments. The selection of the flow control system is critical for the reliable generation of flow during testing. The majority of recent LSCI studies using microfluidics used syringe pumps for flow control. Aim: We quantified the uncertainty in flow generation for a syringe pump and a pressure-regulated flow system. We then assessed the performance of both LSCI and multi-exposure speckle imaging (MESI) using the pressure-regulated flow system across a range of flow speeds. Approach: The syringe pump and pressure-regulated flow systems were evaluated during stepped flow profile experiments in a microfluidic device using an inline flow sensor. The uncertainty associated with each flow system was calculated and used to determine the reliability for instrument testing. The pressure-regulated flow system was then used to characterize the relative performance of LSCI and MESI during stepped flow profile experiments while using the inline flow sensor as reference. Results: The pressure-regulated flow system produced much more stable and reproducible flow outputs compared to the syringe pump. The expanded uncertainty for the syringe pump was 8-20× higher than that of the pressure-regulated flow system across the tested flow speeds. Using the pressure-regulated flow system, MESI outperformed single-exposure LSCI at all flow speeds and closely mirrored the flow sensor measurements, with average errors of 4.6±2.6% and 15.7±4.6%, respectively. Conclusions: Pressure-regulated flow systems should be used instead of syringe pumps when assessing the performance of flow measurement techniques with microfluidic studies. MESI offers more accurate relative flow measurements than traditional LSCI across a wide range of flow speeds.
Significance: Microfluidic flow phantom studies are commonly used for characterizing the performance of laser speckle contrast imaging (LSCI) instruments. The selection of the flow control system is critical for the reliable generation of flow during testing. The majority of recent LSCI studies using microfluidics used syringe pumps for flow control.Aim: We quantified the uncertainty in flow generation for a syringe pump and a pressure-regulated flow system. We then assessed the performance of both LSCI and multi-exposure speckle imaging (MESI) using the pressure-regulated flow system across a range of flow speeds. Approach:The syringe pump and pressure-regulated flow systems were evaluated during stepped flow profile experiments in a microfluidic device using an inline flow sensor. The uncertainty associated with each flow system was calculated and used to determine the reliability for instrument testing. The pressure-regulated flow system was then used to characterize the relative performance of LSCI and MESI during stepped flow profile experiments while using the inline flow sensor as reference.Results: The pressure-regulated flow system produced much more stable and reproducible flow outputs compared to the syringe pump. The expanded uncertainty for the syringe pump was 8 to 20× higher than that of the pressure-regulated flow system across the tested flow speeds. Using the pressure-regulated flow system, MESI outperformed single-exposure LSCI at all flow speeds and closely mirrored the flow sensor measurements, with average errors of 4.6% AE 2.6% and 15.7% AE 4.6%, respectively.Conclusions: Pressure-regulated flow systems should be used instead of syringe pumps when assessing the performance of flow measurement techniques with microfluidic studies. MESI offers more accurate relative flow measurements than traditional LSCI across a wide range of flow speeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.