To a finite-dimensional real representation V of a finite group G there are associated its Stiefel–Whitney classes wk (V) (k = 1, 2, 3, …) in the cohomology groups Hk(G; ). ( is the field with two elements.) The total Stiefel-Whitney classin the ring H*(G; is natural with respect to G in the obvious sense, and, in addition,(a) exponential, i.e. w(V ⊕ W) = w(V).w(W),and(b) stable, i.e. w(V) = 1 when F is a trivial representation.
The object of this paper is to prove that for a finite abelian group G the natural map is injective, where Â(G) is the completion of the Burnside ring of G and σ0(BG) is the stable cohomotopy of the classifying space BG of G. The map â is detected by means of an M U* exponential characteristic class for permutation representations constructed in (11). The result is a generalization of a theorem of Laitinen (4) which treats elementary abelian groups using ordinary cohomology. One interesting feature of the present proof is that it makes explicit use of the universality of the formal group law of M U*. It also involves a computation of M U*(BG) in terms of the formal group law. This may be of independent interest. Since writing the paper the author has discovered that M U*(BG) has previously been calculated by Land-weber(5).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.