Selective activation of peripheral cannabinoid CB1 receptors has the potential to become a valuable therapy for chronic pain conditions as long as central nervous system effects are attenuated. A new class of cannabinoid ligands was rationally designed from known aminoalkylindole agonists and showed good binding and functional activities at human CB1 and CB2 receptors. This has led to the discovery of a novel CB1/CB2 dual agonist, naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone (13), which displays good oral bioavailability, potent antihyperalgesic activity in animal models, and limited brain penetration.
The tumor suppressor Retinoblastoma protein (Rb) is often inactivated in cancer. In many tumors, the Rb protein itself is retained but functionally inactivated by increased CDK4/6 kinase activity. A number of key oncogenic aberrations can result in this increased activity, including inactivation of CDKN2A (p16), translocation or amplification of D-cyclins, amplification of CDK4/6 and mutations/deletions upstream of cyclin D, such as activating mutations of BRAF/PIK3CA and PTEN deletion. Abolishing CDK4/6 kinase activity and subsequent reactivation of Rb in these tumors has been demonstrated to inhibit tumor initiation and growth. Here we will describe LEE011- an orally bioavailable, selective small molecule inhibitor of CDK4/6 kinases. LEE011 inhibits CDK4/6 kinase activity with nM IC50 and is highly selective for these targets. In a number of preclinical tumor models, LEE011 demonstrates a dose dependent anti-tumor activity that tracks well with CDK4/6 inhibition. The primary mechanism for growth inhibitory effect appears to be G1 arrest in vitro, although, in some sensitive in vivo models, regressions are observed. Importantly, given the role of CDK4/6 downstream of other oncogenic driver mutations, LEE011 shows single agent activity in melanomas with activating mutations of BRAF or NRAS, and in breast cancers with intact estrogen receptor and/or activating aberrations of PIK3CA/Her-2. Combining LEE011 with LGX818, a V600E BRAF specific inhibitor, leads to robust anti-tumor activity in melanoma models that are both sensitive and, importantly, those that are resistant to LGX818. Furthermore, combining LEE011 with BYL719, a PIK3CA specific inhibitor, also leads to significant anti-tumor activity in breast cancer models both sensitive and resistant to BYL719. Several clinical studies evaluating LEE011 as single agent and in combinations are underway. Citation Information: Mol Cancer Ther 2013;12(11 Suppl):PR02. Citation Format: Sunkyu Kim, Alice Loo, Rajiv Chopra, Giordano Caponigro, Alan Huang, Sadhna Vora, Sudha Parasuraman, Steve Howard, Nicholas Keen, William Sellers, Christopher Brain. LEE011: An orally bioavailable, selective small molecule inhibitor of CDK4/6– Reactivating Rb in cancer. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr PR02.
Well-differentiated/dedifferentiated liposarcomas (WD/DDLPS) are among the most common subtypes of soft tissue sarcomas. Conventional systemic chemotherapy has limited efficacy and novel therapeutic strategies are needed to achieve better outcomes for patients. The cyclin-dependent kinase 4 (CDK4) gene is highly amplified in more than 95% of WD/DDLPS. In this study, we explored the role of CDK4 and the effects of NVP-LEE011 (LEE011), a novel selective inhibitor of CDK4/CDK6, on a panel of human liposarcoma cell lines and primary tumor xenografts. We found that both CDK4 knockdown by siRNA and inhibition by LEE011 diminished retinoblastoma (RB) phosphorylation and dramatically decreased liposarcoma cell growth. Cell-cycle analysis demonstrated arrest at G 0 -G 1 . siRNA-mediated knockdown of RB rescued the inhibitory effects of LEE011, demonstrating that LEE011 decreased proliferation through RB. Oral administration of LEE011 to mice bearing human liposarcoma xenografts resulted in approximately 50% reduction in tumor 18 F-fluorodeoxyglucose uptake with decreased tumor biomarkers, including RB phosphorylation and bromodeoxyuridine incorporation in vivo. Continued treatment inhibited tumor growth or induced regression without detrimental effects on mouse weight. After prolonged continuous dosing, reestablishment of RB phosphorylation and cell-cycle progression was noted. These findings validate the critical role of CDK4 in maintaining liposarcoma proliferation through its ability to inactivate RB function, and suggest its potential function in the regulation of survival and metabolism of liposarcoma, supporting the rationale for clinical development of LEE011 for the treatment of WD/DDLPS. Mol Cancer Ther; 13(9); 2184-93. Ó2014 AACR.
Inhibition of cyclin-dependent kinases 4 and 6 (CDK4/6) is associated with robust antitumor activity. Ribociclib (LEE011) is an orally bioavailable CDK4/6 inhibitor that is approved for the treatment of hormone receptor–positive, human epidermal growth factor receptor 2–negative advanced breast cancer, in combination with an aromatase inhibitor, and is currently being evaluated in several additional trials. Here, we report the preclinical profile of ribociclib.When tested across a large panel of kinase active site binding assays, ribociclib and palbociclib were highly selective for CDK4, while abemaciclib showed affinity to several other kinases. Both ribociclib and abemaciclib showed slightly higher potency in CDK4-dependent cells than in CDK6-dependent cells, while palbociclib did not show such a difference. Profiling CDK4/6 inhibitors in large-scale cancer cell line screens in vitro confirmed that RB1 loss of function is a negative predictor of sensitivity. We also found that routinely used cellular viability assays measuring adenosine triphosphate levels as a proxy for cell numbers underestimated the effects of CDK4/6 inhibition, which contrasts with assays that assess cell number more directly. Robust antitumor efficacy and combination benefit was detected when ribociclib was added to encorafenib, nazartinib, or endocrine therapies in patient-derived xenografts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.