It remains unclear whether waning of the volcanic degassing CO2 source or enhancement of the mafic (Ca, Mg-silicate) weathering CO2 sink, or both, caused global cooling leading to the Ordovician greenhouse–icehouse transition. We present a uniquely age-constrained and integrated Middle–Late Ordovician (470–450 Ma) continental weathering isotopic proxy data set (87Sr/86Sr and εNd(t)) from carbonate rocks of the Antelope Range of central Nevada, USA, paired with published paleotemperature proxy measurements (δ18O) of conodont apatite from the same locality. This suite of proxy records signals an increase in mafic weathering of the Taconic mountains (eastern United States) at ca. 463 Ma, which forced a period of global cooling. We adapt a 87Sr/86Sr and pCO2 mass balance approach to model CO2 drawdown during the Ordovician, and show that a combined decrease in volcanic degassing and increase in mafic weathering approximately halves pCO2 in agreement with δ18O trends and paleotemperature reconstructions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.