Herein we report the optimization of a series of pyrrolopyrimidine inhibitors of interleukin-1 receptor associated kinase 4 (IRAK4) using X-ray crystal structures and structure based design to identify and optimize our scaffold. Compound 28 demonstrated a favorable physicochemical and kinase selectivity profile and was identified as a promising in vivo tool with which to explore the role of IRAK4 inhibition in the treatment of mutant MYD88 diffuse large B-cell lymphoma (DLBCL). Compound 28 was shown to be capable of demonstrating inhibition of NF-κB activation and growth of the ABC subtype of DLBCL cell lines in vitro at high concentrations but showed greater effects in combination with a BTK inhibitor at lower concentrations. In vivo, the combination of compound 28 and ibrutinib led to tumor regression in an ABC-DLBCL mouse model.
Optimization of cellular lipophilic ligand efficiency (LLE) in a series of 2-anilino-pyrimidine IGF-1R kinase inhibitors led to the identification of novel 2-(pyrazol-4-ylamino)-pyrimidines with improved physicochemical properties. Replacement of the imidazo[1,2-a]pyridine group of the previously reported inhibitor 3 with the related pyrazolo[1,5-a]pyridine improved IGF-1R cellular potency. Substitution of the amino-pyrazole group was key to obtaining excellent kinase selectivity and pharmacokinetic parameters suitable for oral dosing, which led to the discovery of (2R)-1-[4-(4-{[5-chloro-4-(pyrazolo[1,5-a]pyridin-3-yl)-2-pyrimidinyl]amino}-3,5-dimethyl-1H-pyrazol-1-yl)-1-piperidinyl]-2-hydroxy-1-propanone (AZD9362, 28), a novel, efficacious inhibitor of IGF-1R.
The poor regioselectivity of the [4 + 2] cycloaddition of 3-azetidinones with internal alkynes bearing two alkyl substituents via nickel-catalyzed carbon-carbon activation is addressed using 1,3-enynes as substrates. The judicious choice of substitution on the enyne enables complementary access to each regioisomer of 3-hydroxy-4,5-alkyl-substituted pyridines, which are important building blocks in medicinal chemistry endeavors.
In this article,
we report the discovery of a series of 5-azaquinazolines
as selective IRAK4 inhibitors. From modestly potent quinazoline 4, we introduced a 5-aza substitution to mask the 4-NH hydrogen
bond donor (HBD). This allowed us to substitute the core with a 2-aminopyrazole,
which showed large gains in cellular potency despite the additional
formal HBD. Further optimization led to 6-cyanomethyl-5-azaquinazoline 13, a selective IRAK4 inhibitor, which proved efficacious
in combination with ibrutinib, while showing very little activity
as a single agent up to 100 mg/kg. This contrasted to previously reported
IRAK4 inhibitors that exhibited efficacy in the same model as single
agents and was attributed to the enhanced specificity of 13 toward IRAK4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.