Approximately 50 species, including birds, mammals, reptiles, amphibians, fish, crustaceans and insects, are known to use the Earth's magnetic field for orientation and navigation. Birds in particular have been intensively studied, but the biophysical mechanisms that underlie the avian magnetic compass are still poorly understood. One proposal, based on magnetically sensitive free radical reactions, is gaining support despite the fact that no chemical reaction in vitro has been shown to respond to magnetic fields as weak as the Earth's ( approximately 50 muT) or to be sensitive to the direction of such a field. Here we use spectroscopic observation of a carotenoid-porphyrin-fullerene model system to demonstrate that the lifetime of a photochemically formed radical pair is changed by application of < or =50 microT magnetic fields, and to measure the anisotropic chemical response that is essential for its operation as a chemical compass sensor. These experiments establish the feasibility of chemical magnetoreception and give insight into the structural and dynamic design features required for optimal detection of the direction of the Earth's magnetic field.
The avian magnetic compass has been well characterized in behavioral tests: it is an "inclination compass" based on the inclination of the field lines rather than on the polarity, and its operation requires short-wavelength light. The "radical pair" model suggests that these properties reflect the use of specialized photopigments in the primary process of magnetoreception; it has recently been supported by experimental evidence indicating a role of magnetically sensitive radical-pair processes in the avian magnetic compass. In a multidisciplinary approach subjecting migratory birds to oscillating fields and using their orientation responses as a criterion for unhindered magnetoreception, we identify key features of the underlying receptor molecules. Our observation of resonance effects at specific frequencies, combined with new theoretical considerations and calculations, indicate that birds use a radical pair with special properties that is optimally designed as a receptor in a biological compass. This radical pair design might be realized by cryptochrome photoreceptors if paired with molecular oxygen as a reaction partner.
Migratory birds travel vast distances each year, finding their way by various means, including a remarkable ability to perceive the Earth's magnetic field. Although it has been known for 40 years that birds possess a magnetic compass, avian magnetoreception is poorly understood at all levels from the primary biophysical detection events, signal transduction pathways and neurophysiology, to the processing of information in the brain. It has been proposed that the primary detector is a specialized ocular photoreceptor that plays host to magnetically sensitive photochemical reactions having radical pairs as fleeting intermediates. Here, we present a physical chemist's perspective on the ''radical pair mechanism'' of compass magnetoreception in birds. We outline the essential chemical requirements for detecting the direction of an Earth-strength Ϸ50 T magnetic field and comment on the likelihood that these might be satisfied in a biologically plausible receptor. Our survey concludes with a discussion of cryptochrome, the photoactive protein that has been put forward as the magnetoreceptor molecule.
The photometric calibration of the Sloan Digital Sky Survey (SDSS) is a multi-step process which involves data from three different telescopes: the 1.0-m telescope at the US Naval Observatory (USNO), Flagstaff Station, Arizona (which was used to establish the SDSS standard star network); the SDSS 0.5-m Photometric Telescope (PT) at the Apache Point Observatory (APO), New Mexico (which calculates nightly extinctions and calibrates secondary patch transfer fields); and the SDSS 2.5-m telescope at APO (which obtains the imaging data for the SDSS proper). In this paper, we describe the Monitor Telescope Pipeline, MTPIPE, the software pipeline used in processing the data from the single-CCD telescopes used in the photometric calibration of the SDSS (i.e., the USNO 1.0-m and the PT). We also describe transformation equations that convert photometry on the USNO-1.0m u g r i z system to photometry the SDSS 2.5m ugriz system and the results of various validation tests of the MTPIPE software. Further, we discuss the semi-automated PT factory, which runs MTPIPE in the day-to-day standard SDSS operations at Fermilab. Finally, we discuss the use of MTPIPE in current SDSS-related projects, including the Southern u g r i z Standard Star project, the u g r i z Open Star Clusters project, and the SDSS extension (SDSS-II).
Concentric left ventricular (LV) remodelling is associated with adverse cardiovascular events and is frequently observed in patients with type 2 diabetes mellitus (T2DM). Despite this, the cause of concentric remodelling in diabetes, per se, is unclear, but may be related to cardiac steatosis and impaired myocardial energetics. Thus, we investigated the relationship amongst myocardial metabolic changes and LV remodelling in T2DM. Forty-six non-hypertensive T2DM patients and twenty matched controls underwent cardiovascular magnetic resonance to assess LV remodelling (LV mass to LV end diastolic volume ratio-LVMVR), function, pre- and post-contrast tissue characterisation using T1 mapping, 1H-, 31P-magnetic resonance spectroscopy for myocardial triglyceride content (MTG) and phosphocreatine to ATP ratio (PCr/ATP) respectively. When compared to body mass index and blood pressure matched controls, diabetes was associated with: concentric LV remodelling, higher MTG, impaired myocardial energetics and impaired systolic strain indicating a subtle contractile dysfunction. Importantly, cardiac steatosis independently predicted concentric remodelling and systolic strain. Extracellular volume fraction was unchanged, indicating absence of fibrosis. In conclusion, cardiac steatosis may contribute to LV concentric remodelling and contractile dysfunction in diabetes. As cardiac steatosis is modifiable, strategies aimed at reducing myocardial triglyceride may be beneficial in reversing concentric remodelling and improving contractile function in the diabetic heart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.